Bibliography

Illinois Institute of Technology

QUASI-NIL RINGS

ERWIN KLEINFELD

Rings have been studied which have among others the property that every commutator $xy - yx$ is in the nucleus. It seems appropriate to consider rings in which the square of every element is in the nucleus, a property that is shared by both associative and Lie rings. Under the additional assumptions of primeness and characteristic different from 2 it can be shown that such rings are either associative or have the property that $x^2 = 0$, for every element x of the ring. If further $(x, y, z) + (y, z, x) + (z, x, y)$ is in the nucleus for all elements x, y, z of the ring, then the ring is either associative or a Lie ring.

We use the notation $(x, y, z) = (xy)z - x(yz)$. The nucleus N of a ring R consists of all $n \in R$ such that $(n, R, R) = (R, n, R) = (R, R, n) = 0$. N is a subring of R.

Lemma. Let R be a prime ring satisfying $x^2 \in N$ for every $x \in R$ and of characteristic different from 2. Then either R is associative or $N^2 = 0$.

Proof. For all $r, s \in R$, $rs + sr = (r + s)^2 - r^2 - s^2$ must be in N. Select $n, n' \in N$, and $x, y, z \in R$. Then $(n(n'x + xn'), y, z) = 0$, so that $(nn'x, y, z) = -(nxn', y, z)$. Similarly $(nn'x, y, z) = -(nxn', y, z)$ and $(xn', y, z) = -(nn'x, y, z)$. By combining these three equalities it follows that $2(nn'x, y, z) = 0$. Assuming characteristic not 2 it then follows that $(nn'x, y, z) = 0$. Since $(nx, y, z) = (nx)y - (nx)(yz) = (n(xy))z - n((xy)z) = n((xy)z - n(x(yz)) = n(x, y, z)$, we replace n
by \(nn' \) and obtain \((nn'x, y, z) = nn'(x, y, z) \). We deduce that \(nn'(x, y, z) = 0 \), so that \(N^2(R, R, R) = 0 \). Let \(I \) be the ideal generated by \(N^2 \), and \(J \) the ideal generated by all associators \((R, R, R)\). We note that
\[
nn'x = n(n'x + xn') -(nx+xn)n'+xnn',
\]
so that \(N^2R \subseteq RN^2 + N^2 \). Consequently \(I = RN^2 + N^2 \). In an arbitrary ring \(J = (R, R, R) + (R, R, R)R \). It follows from \(N^2(R, R, R) = 0 \), that \(IJ = 0 \). Since \(R \) is prime either \(I = 0 \), or \(J = 0 \). If \(I = 0 \), then \(N^2 = 0 \). On the other hand if \(J = 0 \), then \(R \) is associative. This completes the proof of the lemma.

Theorem 1. Let \(R \) be a prime ring of characteristic not 2 satisfying
\(r^2 \subseteq N \) for all \(r \in R \). Then either \(R \) is associative or \(r^2 = 0 \), for all \(r \in R \).

Proof. Let us consider the case \(N \neq R \). Then it follows from the lemma that \(N^2 = 0 \). Let \(K = N + NR \). Since \(rn = (rn + nr) - nr \in K \) and
\[
\begin{align*}
snr &= (sn + ns)r - nsr \in K,
\end{align*}
\]
for all \(n \in N \) and \(r, s \in R \), \(K \) must be an ideal of \(R \). Moreover if \(n' \in N \), then
\[
nnn' = n(rn' + n'r) - nn'r = 0,
\]
since \(N^2 = 0 \). This suffices to show \(K^2 = 0 \). But \(R \) is prime and so \(K = 0 \). But then \(N = 0 \), whence \(r^2 = 0 \), for all \(r \in R \). This completes the proof of the theorem.

Theorem 2. Let \(R \) be a prime ring of characteristic not 2 satisfying
(i) \(x^2 \subseteq N \) for all \(x \in R \), and (ii) \((x, y, z) + (y, z, x) + (z, x, y) \subseteq N \) for all \(x, y, z \in R \). Then \(R \) is either associative or a Lie ring. Conversely all associative rings and all Lie rings satisfy both (i) and (ii).

Proof. Assume that \(R \) satisfies (i) and (ii), and suppose \(N \neq R \). Then Theorem 1 implies that \(x^2 = 0 \), for all \(x \in R \), and consequently \(R \) is anti-commutative. For any \(n \in N \), \(nxy = -nxy = xyn \), and also \(nxy = -xyn \), so that \(2nxy = 0 \). Thus \(NR^2 = 0 \). The set \(T \) of all \(t \in R \) such that \(tR = 0 \), forms an ideal of \(R \) which must be zero since \(R \) is prime. But since \(NR \subseteq T \) we obtain first \(NR = 0 \), and subsequently \(N = 0 \). In any anti-commutative ring \((x, y, z) + (y, z, x) + (z, x, y) = (xy)z - x(yz) + (yz)x - y(zx) + (zx)y - z(xy) = 2((xy)z + (yz)x + (zx)y)\) which equals twice the Jacobian of \(x, y, z \). Then because of (ii) we conclude that the well known Jacobi identity holds and thus \(R \) is a Lie ring. The converse follows automatically. In an associative ring \(N = R \), so that (i) and (ii) are trivially satisfied. All Lie rings are anti-commutative and satisfy the Jacobi identity, so that (ii) follows. This completes the proof of the theorem.

N. H. McCoy [1] and R. L. SanSoucie [2] have shown independently that any primitive ring is prime. Consequently the above theorems may be extended to primitive and semi-simple rings in the usual way.

We conclude with a couple of examples.
Example 1. Let \(x, y, z, n \) be basis elements of the algebra \(A \) over an arbitrary field \(F \). All products of basis elements are defined to be zero with the exception of \(xy = -yx = z, \ xz = -xz = y, \ yz = -zy = x, \) and \(n^2 = n \). For every \(\alpha, \beta, \gamma, \delta \in F \), \((\alpha x + \beta y + \gamma z + \delta n)^2 = \delta^2 n \) is in the nucleus. Thus for every \(r \in R \), \(r^2 \in N \). \(R \) has four ideals, the trivial ones, the ideal \(B \) generated by \(x, y, z \), and the ideal \(C \) generated by \(n \). Also \(BC = 0 = CB \), while \(B^2 = B \), and \(C^2 = C \).

Example 2. Let \(1, x, y \) be basis elements of the algebra \(R \) over an arbitrary field \(F \), where \(xy = 1, \ yx = x^2 = y^2 = 0 \). For any \(\alpha, \beta, \gamma \in F \), \((\alpha + \beta x + \gamma y)^2 = \alpha^2 + 2\alpha \beta x + 2\alpha \gamma y + \beta \gamma = 2\alpha (\alpha + \beta x + \gamma y) + \beta \gamma - \alpha^2 \). Thus \(R \) is quadratic over \(F \). Moreover it can be readily verified that \(R \) is simple, power-associative, and that all commutators of \(R \) are contained in \(F \). \(R \) is not associative since \((x, y, y) = y \). Also \((x + y)^2 = 1 \neq 0 \). If \(F \) happens to be a field of characteristic 2 then \(r^2 \in F \) for every \(r \in R \). We see that Theorem 1 fails to hold for rings of characteristic 2.

Bibliography

Ohio State University