PROXIMITY MAPS FOR CONVEX SETS
WARD CHENEY AND ALLEN A. GOLDSTEIN

The method of successive approximation is applied to the problem of obtaining points of minimum distance on two convex sets. Specifically, given a closed convex set \(K \) in Hilbert space, let \(P \) be the map which associates with each point \(x \) the point \(Px \) of \(K \) closest to \(x \). That \(P \) is well-defined is proved in [1, p. 6]. \(P \) will be called the proximity map for \(K \). If there are two such sets, \(K_1 \) and \(K_2 \), let \(Q \) denote the composition \(P_1P_2 \) of their proximity maps. It is shown that every fixed point of \(Q \) is a point of \(K_1 \) closest to \(K_2 \), and that the fixed points of \(Q \) may be obtained by iteration of \(Q \) when one of the sets is compact or when both are polytopes in \(E^n \). An application to the solution of linear inequalities is cited. Our thanks are due the referee for having suggested substantial simplifications.

Theorem 1. Let \(Q \) be a map of a metric space into itself such that
(i) \(d(Qx, Qy) \leq d(x, y) \),
(ii) if \(x \neq Qx \), then \(d(Qx, Q^2x) < d(x, Qx) \),
(iii) for each \(x \), the sequence \(Q^n x \) has a cluster point. Then for each \(x \), the sequence \(Q^n x \) converges to a fixed point of \(Q \).

Proof. By (i), the sequence \(d(Q^n x, Q^{n+1} x) \) is nonincreasing. Let \(y \) be a cluster point of \(Q^n x \), say \(y = \lim_k Q^n k x \). By (i), \(Q \) is continuous; therefore \(d(y, Qy) = \lim_k d(Q^n k x, Q^{n+k+1} x) = \lim_n d(Q^n x, Q^{n+1} x) = \lim_k d(Q^{n+k+1}, Q^{n+k+2} x) = d(Qy, Q^2y) \) contrary to (ii) unless \(y = Qy \). From (i) it follows that for all \(n \), \(d(Q^{n+N} x, y) \leq d(Q^N x, y) \) whence \(Q^n x \rightarrow y \).

Corollary. Let \(Q \) be a map of a normed linear space into itself having the property \(||Qx - Qy|| \leq ||x - y|| \), equality holding only if \(x = y \). Let \(R = \alpha Q + (1 - \alpha) I \), \((0 < \alpha \leq 1) \). If the range of \(R \) is compact, then \(Q \) has a unique fixed point which is the limit of every sequence \(R^n x \) with \(x \) arbitrary. (For related results, see [2].)

Lemma. Let \(K \) be a convex set in Hilbert space. A point \(b \in K \) is nearest a point \(a \in K \) if and only if \(s = (x - b, b - a) \geq 0 \) for all \(x \in K \).

Proof. Suppose \(b \) nearest \(a \), and let \(x \) be arbitrary in \(K \). When \(0 \leq t \leq 1 \), \(tx + (1 - t)b \in K \). Thus \(0 \leq ||a - tx - (1 - t)b||^2 - ||a - b||^2 = t^2 ||b - x||^2 + 2ts \). But this inequality would be violated by small \(t \)

Presented to the Society, January 22, 1959; received by the editors July 26, 1958 and, in revised form, October 4, 1958.

448
unless $s \geq 0$. For the converse, suppose $s \geq 0$. Then $\|x - a\|^2 - \|a - b\|^2 = (x, x) - 2(a, x) + 2(a, b) - (b, b) = (x - b, x - b) + 2s \geq 0$.

Theorem 2. Let K_1 and K_2 be two closed convex sets in Hilbert space. Let P_i denote the proximity map for K_i. Any fixed point of P_1P_2 is a point of K_1 nearest K_2, and conversely.

Proof. Suppose $y = P_2x$ and $x = P_1y$. If $x = y$, the distance between K_1 and K_2 is thereby attained. Otherwise $x \notin K_2$ and $y \notin K_1$. If u is arbitrary in K_1, then by the Lemma, $(u - x, x - y) \geq 0$ whence $(u, x - y) \geq (x, x - y)$. Similarly for arbitrary $v \in K_2$, $(v, y - x) \geq (y, y - x)$. Addition yields $(u - v, x - y) \geq (x - y, x - y)$ from which via the Schwartz inequality, $\|u - v\| \geq \|x - y\|$. For the converse, suppose that $\|x - P_2x\| \leq \|z - P_2z\|$ for all $z \in K_1$. Setting $z = P_1P_2x$ we have $\|z - P_2z\| \leq \|z - P_2x\| \leq \|x - P_2x\| \leq \|z - P_2z\|$ whence $z = x$ by the uniqueness of z.

Theorem 3. The proximity map P for a closed convex set K in Hilbert space satisfies the Lipschitz condition $\|Px - Py\| \leq \|x - y\|$, equality holding only if $\|x - Px\| = \|y - Py\|$. \[\text{Proof.} \] By the Lemma, $A = (Px - Py, Py - y) \geq 0$ and $B = (Py - Px, Px - x) \geq 0$. Regrouping terms in the inequality $A + B \geq 0$ and using the Schwartz inequality, one has $\|Py - Px\| \cdot \|y - x\| \geq (Py - Px, Py - Px) = \|Py - Px\|^2$, whence $\|y - x\| \geq \|Py - Px\|$. Equality holds here only if $A = B = 0$ and if $Py - Px = \lambda(y - x)$. Thus $C = (y - x, Py - y) = 0$ and $D = (y - x, Px - x) = 0$. A computation shows then that $0 = A - B + C + D = \|Px - x\|^2 - \|Py - y\|^2$.

Theorem 4. Let K_1 and K_2 be two closed convex sets in Hilbert space and Q the composition P_1P_2 of their proximity maps. Convergence of $Q^n x$ to a fixed point of Q is assured when either (a) one set is compact, or (b) one set is finite dimensional and the distance between the sets is attained.

Proof. Theorem 3 implies that Q satisfies (i) of Theorem 1. If $y = Qx \neq x \in K_1$, then $\|y - P_2y\| \leq \|y - P_2x\| < \|x - P_2x\|$. By Theorem 3, $\|Qx - Qy\| \leq \|P_2x - P_2y\| < \|x - y\|$. Thus Q satisfies (ii) of Theorem 1. If the distance between the sets is attained, then Q has a fixed point y by Theorem 2, and $\|Q^n x\| \leq \|Q^n x - Qy\| + \|y\| \leq \|x - y\| + \|y\|$. Boundedness of $\|Q^n x\|$ and finite-dimensionality of K_1 suffice for (iii) of Theorem 1. $Q' = P_2P_1$ replaces Q in these arguments when K_2 replaces K_1. But if y is a fixed point of Q', then P_1y is a fixed point of Q.

Theorem 5. In a finite dimensional Euclidean space, the distance
between two polytopes is attained, a polytope being the intersection of a finite family of halfspaces.

Proof. First, the case when both polytopes are linear manifolds. Let K_1 be the linear span of $\{x_1, \cdots, x_m\}$ and K_2 the linear span of $\{y_1, \cdots, y_n\}$ translated by a vector cy_0. Assume the x's and y's each form orthonormal sets. A point $x = \sum \xi_i x_i$ is sought which minimizes $G = \|cy_0 + \sum (x, y_i) y_i - x\|^2$. G is a positive definite quadratic function of ξ_1, \cdots, ξ_m, and therefore attains a minimum.

Now assume the validity of the theorem when one polytope is of dimension less than n and the other is a linear manifold. (The validity for $n=1$ being established by the above.) Let K_1 be a polytope of dimension n and K_2 a linear manifold. On each proper face of K_1 there is a point nearest K_2. There being only a finite number of faces, either one of these points is the required one or there is a point $x_0 \in K_1$ such that $d(x_0, K_2) < d(F, K_2)$ for all proper faces F of K_1. In the latter case, let y_0 be chosen nearest to K_2 in the least linear manifold containing K_1. Since $d(x, K_2)$ is a convex function of x, the line segment x_0y_0 contains no point of any proper face of K_1. Therefore $y_0 \in K_1$ and must be the required point. The proof for the remaining case is as above, mutatis mutandis.

Linear inequalities. Consider the system of linear inequalities $(A^i, x) \leq b_i$ where $x \in E_n$ and $1 \leq i \leq m$. Let K_1 denote the range of the matrix A and K_2 the orthant $\{y \in E_m: y_i \leq b_i \text{ all } i\}$. If K_1 and K_2 have a point in common, then any x for which $Ax \in K_1 \cap K_2$ is a solution of the system. Even if the system is inconsistent, a point on K_1 closest to K_2 may be obtained by iteration of the map $Q = P_1 P_2$. These proximity maps are defined as follows. If A is of rank n, $P_1 = A (A^T A)^{-1} A^T$. If A is not necessarily of rank n, one may write $P_1 = B B^T$ where B is a column-orthogonal matrix whose range is that of A. $P_2 y = z$ if and only if $z_i = y_i$ when $y_i \leq b_i$ and $z_i = b_i$ otherwise. Convergence of each sequence $Q^n x$ is guaranteed by Theorem 4.

Bibliography

Convair Astronautics, San Diego