ON PHI-FAMILIES

CHARLES E. WATTS

1. Introduction. The purpose of this note is to show that the notion of sections with support in a phi-family in the Cartan version of the Leray theory of sheaves can be avoided by the following expedient. One uses the phi-family to construct a new space in the manner of a one-point compactification. Then a sheaf on the original space is shown to yield a new sheaf on the new space whose cohomology (with unrestricted supports) is that of the original sheaf with restricted supports. A partial generalization to the Grothendieck cohomology theory is given.

2. Phi-families. A family \mathcal{F} of subsets of a topological space X is a family of supports [1] provided:

(I) each member of \mathcal{F} is closed;
(II) if $F \in \mathcal{F}$, then each closed subset of F is $\in \mathcal{F}$;
(III) if $F_1, F_2 \in \mathcal{F}$, then $F_1 \cup F_2 \in \mathcal{F}$.

Given a family of supports \mathcal{F}, we choose an object $\in \mathcal{X}$, and define $X' = \mathcal{U} \mathcal{F}$, $X^* = X' \cup \{\infty\}$. We then topologize X^* by saying that a subset U of X^* is open iff either U is open in X' or else $X^* - U \in \mathcal{F}$.

It is readily verified that these open sets in fact form a topology for X^* and that the inclusion $X' \subseteq X^*$ is a topological imbedding.

The family of supports \mathcal{F} is a phi-family [3] provided also:

(IV) each member of \mathcal{F} has a closed neighborhood in \mathcal{F};
(V) each member of \mathcal{F} is paracompact.

Proposition 1. If \mathcal{F} is a phi-family, then X^* is paracompact.

Proof. Let \mathcal{U} be any open cover of X^* and choose $U_\infty \subseteq \mathcal{U}$ with $\in \in U$. Then $X^* - U_\infty \subseteq \mathcal{F}$, so we can find an open set V with $X^* - U_\infty \subseteq V \subseteq X'$, $V \in \mathcal{F}$. Now the sets of the form $U \cap V$, $U \in \mathcal{U}$, cover V; since V is paracompact there is a locally finite refinement \mathcal{U}' of this cover of V. Now let \mathcal{W} be the family of all sets $U' \cap V$, $U' \in \mathcal{U}'$. Then $\gamma = \mathcal{W} \cup \{U_\infty\}$ is a locally finite open cover of X^*, refining \mathcal{U}.

To show that X^* is a Hausdorff space, let x and y be distinct points of X^*. If $y = \infty$, then $\{x\} \subseteq \mathcal{F}$; we choose a neighborhood U of x with $U \subseteq \mathcal{F}$ and then U, $X^* - U$ are disjoint neighborhoods of x, y. If $x \neq \infty$ and $y \neq \infty$, we choose U as before. If $y \in \mathcal{U}$, then U, $X^* - U$ are disjoint neighborhoods of x, y. If $y \not\in \mathcal{U}$, then since \mathcal{U} is Hausdorff, we can choose open subsets V, W of x with $x \in V, y \in W$, $V \cap W \cap U = \emptyset$. Then $V \cap U, W \cap (X^* - U)$ are disjoint neighborhoods of x, y.

Received by the editors October 24, 1958.

369
As examples of families of supports, we cite the following:
(1) The compact subsets of a locally compact space;
(2) The bounded closed subsets of a metric space;
(3) The closed subsets of a space which do not meet a fixed subset A. This will be a phi-family if A is closed and the whole space X is paracompact. X^* is the quotient space of X obtained by identifying A to a point. Such a family may be used to define the relative cohomology $H(X, A; \mathcal{F})$ with coefficients in a sheaf \mathcal{F}, in a manner described in the next section.

3. Applications to sheaf theory. Let \mathcal{F} be a family of supports for a space X and let \mathcal{A} be a sheaf of rings or modules over X. We form the restriction $\mathcal{A}|X'$ of \mathcal{A} to X' and then construct a sheaf \mathcal{A}^* over X^* by defining $\mathcal{A}^*|X' = \mathcal{A}|X'$ and letting the stalk A^*_x of \mathcal{A}^* over x be zero. A neighborhood of A^*_x consists of the zeroes of stalks over a neighborhood of x. That the sheaf \mathcal{A}^* is well determined by these data is easily verified. A map $f: \mathcal{A} \to \mathcal{B}$ of sheaves over X determines a map $f^*: \mathcal{A}^* \to \mathcal{B}^*$ of sheaves over X^* in an obvious way, and the following proposition is immediate.

Proposition 2. The correspondence $\mathcal{A} \to \mathcal{A}^*, f \to f^*$ is an exact functor from the category of sheaves over X to that of sheaves over X^*.

Proposition 3. If \mathcal{F} is a phi-family and if \mathcal{A} is \mathcal{F}-fine, then \mathcal{A}^* is fine.

Proof. Let \mathcal{U}^* be a locally finite open cover of X^*. We may assume that $\mathcal{U}^* = \mathcal{U}' \cup \{X^* - F\}$, where \mathcal{U}' is a cover of X' and $F \subseteq \mathcal{F}$, since such covers are clearly cofinal among all covers of X^*. Then $\mathcal{U} = \mathcal{U}' \cup \{X - F\}$ is a locally finite \mathcal{F}-cover of X. If $\{l_i\}$ are endomorphisms of \mathcal{A} making up a partition of unity for \mathcal{A} and \mathcal{U}, then the endomorphisms $\{l_i^*\}$ make up a partition of unity for \mathcal{A}^* and \mathcal{U}^*. Hence \mathcal{A}^* is fine.

Proposition 4. If \mathcal{F} is any family of supports on a space X, and if \mathcal{A} is any sheaf over X, then there is a natural isomorphism
$$\Gamma(X^*; \mathcal{A}^*) \approx \Gamma_{\mathcal{F}}(X; \mathcal{A}),$$
where $\Gamma_{\mathcal{F}}(X; \mathcal{A})$ is the module of sections of \mathcal{A} over X with supports in \mathcal{F}.

The proof of Proposition 4 is immediate.

Theorem A. Let \mathcal{F} be a phi-family on a space X, \mathcal{A} a sheaf over X. Then there are natural isomorphisms, for each $p \geq 0$,
$$H^p(X^*; \mathcal{A}^*) \approx H^p_{\mathcal{F}}(X; \mathcal{A}).$$
Proof. The preceding propositions shows that the modules $H^p(X^*; \alpha^*)$ and their associated maps satisfy the Cartan axioms \[3\] for the \mathcal{F}-cohomology of α.

We do not know whether or not the analog of Theorem A holds for arbitrary families of supports using the Grothendieck cohomology theory of sheaves \[1; 2\]. However, the following result is true.

Theorem B. If \mathcal{F} is any family of supports on a space X such that $U\mathcal{F} = X$, and if α is any sheaf on X, then there are natural isomorphisms

$$H^p(X^*; \alpha^*) \cong H^p_{\mathcal{F}}(X; \alpha),$$

where the cohomology modules are defined in the sense of Grothendieck.

The proof reduces to the easy verification that, under the assumption on \mathcal{F}, if α is injective, then so is α^*.

References

The University of Chicago