A complete orthonormal system of homogeneous polynomials on matrix spaces of order 2
Author:
Josephine Mitchell
Journal:
Proc. Amer. Math. Soc. 10 (1959), 399406
MSC:
Primary 32.00
MathSciNet review:
0105513
Fulltext PDF Free Access
References 
Similar Articles 
Additional Information
 [1]
Stefan
Bergman, The Kernel Function and Conformal Mapping,
Mathematical Surveys, No. 5, American Mathematical Society, New York, N.
Y., 1950. MR
0038439 (12,402a)
 [2]
S.
Bochner, Group invariance of Cauchy’s formula in several
variables, Ann. of Math. (2) 45 (1944),
686–707. MR 0011131
(6,123i)
 [3]
LoKèn
Hua, On the theory of functions of several complex variables. I. On
a complete orthonormal system in the hyperbolic space of rectangular
matrices, Doklady Akad. Nauk SSSR (N.S.) 93 (1953),
775–777 (Russian). MR 0060035
(15,617a)
 [4]
, Harmonic analysis of the classical domain in the study of analytic functions of several complex variables, Mimeographed Lecture Notes, about 1956.
 [5]
Josephine
Mitchell, An example of a complete orthonormal system and the
kernel function in the geometry of matrices, Proc. Second Canadian
Math. Congress, Vancouver, 1949, University of Toronto Press, Toronto,
1951, pp. 155–163. MR 0043916
(13,339c)
 [6]
Josephine
Mitchell, The kernel function in the geometry of matrices,
Duke Math. J. 19 (1952), 575–583. MR 0050690
(14,368b)
 [7]
Josephine
Mitchell, Potential theory in the geometry of
matrices, Trans. Amer. Math. Soc. 79 (1955), 401–422. MR 0072242
(17,253a), http://dx.doi.org/10.1090/S00029947195500722426
 [8]
E.
T. Whittaker and G.
N. Watson, A course of modern analysis, Cambridge Mathematical
Library, Cambridge University Press, Cambridge, 1996. An introduction to
the general theory of infinite processes and of analytic functions; with an
account of the principal transcendental functions; Reprint of the fourth
(1927) edition. MR 1424469
(97k:01072)
 [1]
 S. Bergman, The kernel function and conformal mapping, Mathematical Surveys, vol. 5, American Mathematical Society, 1950. MR 0038439 (12:402a)
 [2]
 S. Bochner, Group invariance of Cauchy's formula in several variables, Ann. of Math. vol. 45 (1944) pp. 686707. MR 0011131 (6:123i)
 [3]
 L. K. Hua, On the theory of functions of several complex variables. I. On a complete orthonormal system in the hyperbolic space of rectangular matrices, Dokl. Akad. Nauk SSSR (N.S.) vol. 93 (1953) pp. 775777 [Math. Rev. 15 (1954) p. 617] and J. Chinese Math. Soc. vol. 2 (1953) pp. 288323 [Math. Rev. 17, 1956, p. 191]. MR 0060035 (15:617a)
 [4]
 , Harmonic analysis of the classical domain in the study of analytic functions of several complex variables, Mimeographed Lecture Notes, about 1956.
 [5]
 J. Mitchell, An example of a complete orthonormal system and the kernel function in the geometry of matrices, Proceedings of Second Canadian Mathematical Congress, Vancouver, 1949, pp. 155163. MR 0043916 (13:339c)
 [6]
 , The kernel function in the geometry of matrices, Duke Math. J. vol. 19 (1952) pp. 575584. MR 0050690 (14:368b)
 [7]
 , Potential theory in the geometry of matrices, Trans. Amer. Math. Soc. vol. 79 (1955) pp. 401422. MR 0072242 (17:253a)
 [8]
 E. T. Whittaker and G. N. Watson, A course of modern analysis, Cambridge, Cambridge University Press, 1948. MR 1424469 (97k:01072)
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC:
32.00
Retrieve articles in all journals
with MSC:
32.00
Additional Information
DOI:
http://dx.doi.org/10.1090/S00029939195901055134
PII:
S 00029939(1959)01055134
Article copyright:
© Copyright 1959
American Mathematical Society
