ON MONOTONE AND POSITIVE SOLUTIONS OF SECOND ORDER NONLINEAR DIFFERENTIAL EQUATIONS

JOHN JONES, JR.

1. Introduction. Second order nonlinear differential equations of the type

\[y'' + f(y, y')y' + g(y) = 0 \quad (y' = dy/dx) \]

were first investigated by Levinson and Smith [4], and more recently by Utz [5; 6; 7; 8], Antosiewicz [1], G. Brauer [2] and others. For a detailed treatment see Lefschetz [3]. The purpose of this note is to consider the behavior of solutions of (1.1) for large values of the independent variable, assuming the existence of such solutions. A solution is said to be oscillatory if it has positive maxima and negative minima for arbitrarily large values of \(x \).

2. Monotone solutions. The following result gives sufficient conditions for monotone solutions of (1.1)

Theorem 1. Let the following conditions be satisfied:

(i) \(\phi(y, y') = f(y, y')y', f(y, y') \geq 0 \) for all \(y, y' \),

(ii) \(yg(y) \geq 0 \) for \(y' \neq 0 \),

(iii) \(\int_{0}^{y} g(z) dz \to -\infty \) as \(y \to -\infty \),

(iv) \(\int_{E} \left\{ \phi(y, y') + g(y) \right\} dy' \neq -\infty \),

where \(E = \{ x | y(x) \geq 0, y'(x) \geq 0 \} \), then a solution \(y(x) \), valid for all large \(x \), approaches zero monotonically as \(x \) tends to infinity.

H. A. Antosiewicz [1] has shown that (i), (ii) and (iii) imply that \(|y(x)| \) and \(|y'(x)| \) remain bounded as \(x \to \infty \). In [5] W. R. Utz established that (i), (ii), and (iii) also imply that if \(y(x) \) is a solution of (1.1) which does not vanish identically, then \(y(x) \) is bounded and oscillatory as \(x \to \infty \), or \(y(x) \) approaches zero monotonically as \(x \to \infty \). Let us assume that a solution \(y(x) \) of (1.1) does not approach zero monotonically as \(x \to \infty \); then \(y(x) \) must be oscillatory.

Let \(x_1 \) be a zero of \(y(x) \) such that \(y \) is negative immediately to the left and positive immediately to the right of \(x_1 \). Then \(y'(x_1) \geq 0 \). Moreover, if \(y'(x_1) = 0 \), then \(y'(x) > 0 \) on the immediate right of \(x_1 \) and consequently, \(y''(x) > 0 \) on the immediate right of \(x_1 \). But this is impossible as (1.1) shows. Hence \(y'(x_1) > 0 \). Let \(\tilde{x}_1 \) denote the first zero of \(y'(x) \) to the right of \(x_1 \). By integrating (1.1) over the interval \((x_1, \tilde{x}_1) \) we have

Received by the editors September 2, 1958 and, in revised form, October 31, 1958.
(2.1) \[y'(\tilde{x}_1) - y'(x_1) + \int_{x_1}^{\tilde{x}_1} [\phi(y, y') + g(y)] \, dx = 0. \]

Since \(y'(\tilde{x}_1) = 0 \),

(2.2) \[y'(x_1) = \int_{x_1}^{\tilde{x}_1} [\phi(y, y') + g(y)] \, dx. \]

By (ii) \(g(y) > 0 \) for \(x_1 < x < \tilde{x}_1 \). Also \(\phi(y, y') \geq 0 \), and hence \(y''(x) < 0 \). Hence \(y' \) is positive and decreasing on \((x_1, \tilde{x}_1) \). Thus, by (2.2) we have

\[1 = \int_{x_1}^{\tilde{x}_1} [\phi(y, y') + g(y)] \, dx/y'(x_1) \]

(2.3)

\[\leq \int_{x_1}^{\tilde{x}_1} \left\{ [\phi(y, y') + g(y)]/y'(x) \right\} \, dx. \]

It follows from (iv) that the right-hand side of (2.3) tends to zero as \(x_1 \) tends to infinity. Hence, we arrive at a contradiction and \(y(x) \) is monotone decreasing to zero as \(x \to \infty \).

3. On positive solutions. The following theorem gives sufficient conditions for the nonexistence of solutions which remain positive for large values of \(x \).

Theorem 2. If (i) and (ii) of Theorem 1 hold, and

(v) \[|\phi(y, y')| \leq g(y) \text{ for all } y, y', \]

(vi) there exist numbers \(a \) and \(b \) such that \(a < b \) and

\[\int_b^{\infty} (x - a)[\phi(y, y') + g(y)] \, dx = \infty, \]

(vii) \[(\phi(y, y') + g(y))^{1/2} \geq [y(x)]^2 \]

then no solution of (1.1) can remain positive for all \(x \) greater than \(a \).

Suppose that there exists a solution \(y(x) \) such that \(y(x) > 0 \) for \(x > a \). It follows from (1.1) that \(y''(x) < 0 \), so \(y'(x) \) is decreasing for \(x > a \), and \(y'(x) \) tends either to a finite limit or to \(-\infty \). Moreover this limit cannot be negative for then \(y(x) \) would become negative. Hence \(y(x) \) must be ultimately nondecreasing, and \(y'(x) \) tends to a finite non-negative limit. If we take \(x > a \) and integrate (1.1) over the interval \((x, \infty) \), we obtain:

(3.1) \[y'(\infty) - y'(x) + \int_x^{\infty} [\phi(y, y') + g(y)] \, dx = 0. \]

(The convergence of the integral is guaranteed by the existence of
\[y'(\infty) = \lim_{x \to \infty} y(x). \] Since \(y'(\infty) \geq 0 \), we have, by (3.1)

\[(3.2) \quad y'(x) \geq \int_x^\infty [\phi(y, y') + g(y)] dx. \]

Integrating (3.2) over the interval \((a, x)\) for \(x > a\) we have

\[(3.3) \quad y(x) - y(a) \geq \int_a^x \int_u^x [\phi(y, y') + g(y)] dt du \]

and thus

\[(3.4) \quad y(x) \geq \int_a^x (t - a)[\phi(y, y') + g(y)] dt. \]

From (3.4) and by making use of (vii), we have the following inequalities,

\[\frac{(x - a)[\phi(y, y') + g(y)]^{1/2}}{\left\{ \int_a^x (t - a)[\phi(y, y') + g(y)] dt \right\}^2} \geq \frac{[y(x)]^2(x - a)}{\left\{ \int_a^x (t - a)[\phi(y, y') + g(y)] dt \right\}^2} \geq x - a. \]

If we multiply both sides of (3.5) by \([\phi(y, y') + g(y)]^{1/2}\), choose \(x_1\) such that \(a < x_1\), and integrate (3.5) from \(b\) to \(x_1\) we have

\[(3.6) \quad \int_b^{x_1} \left\{ \int_a^x (t - a)[\phi(y, y') + g(y)] dt \right\}^{-2} \left\{ (x - a)[\phi(y, y') + g(y)] \right\} dx \]

\[\geq \int_b^{x_1} (t - a)[\phi(y, y') + g(y)]^{1/2} dt. \]

As \(x_1 \to \infty\) the left-hand side of (3.6) remains bounded, hence we reach a contradiction to (vi). Thus \(y(x)\) cannot remain positive for all large values of \(x\).

Referee’s Remark. The author’s proof of Theorem 2 also shows that \(y(x)\) cannot be negative for all large values of \(x\). Thus \(y(x)\) changes sign at arbitrarily large \(x\)-values, that is, \(y\) is oscillatory.

References

Air Force Institute of Technology and
University of Tennessee