SOME CONDITIONS UNDER WHICH A HOMOGENEOUS CONTINUUM IS A SIMPLE CLOSED CURVE

C. E. BURGESS

In a recent paper [3], the author added a note in proof stating that two of the results could be strengthened by using the fact that a non-degenerate continuous curve is a simple closed curve if it is nearly homogeneous and is not a triod. It is the main purpose of this note to present a proof of this theorem and to state stronger forms of two results in [3]. Also, a theorem is presented that is related to a question raised by Knaster and Kuratowski [6]. This question as to whether every nondegenerate homogeneous bounded plane continuum is a simple closed curve has been settled negatively with examples by Bing [1] and Bing and Jones [2]. Additional conditions under which there is an affirmative answer have been given in some of the references cited in [3]. It apparently has not been noticed previously that there is an affirmative answer for nondegenerate bounded continua that are homogeneously embedded in the plane. This result (Theorem 3) follows directly from a characterization of homogeneous decomposable bounded plane continua given by Jones [5] and the nonaccessibility of certain points of indecomposable plane continua [7].

Definitions. A continuous curve is a compact metric space that is connected and locally connected. A triod is a continuum which is separated into three mutually separated sets by one of its subcontinua. A continuum M is: (i) homogeneous if for any two points x and y of M there is a homeomorphism of M onto itself that carries x into y; (ii) nearly homogeneous if for any point x of M and any subset D of M, open relative to M, there is a homeomorphism of M onto itself that carries x into a point of D; (iii) 2-homogeneous if for any two points x_1 and x_2 of M and any two points y_1 and y_2 of M there is a homeomorphism of M onto itself that carries x_1+x_2 onto y_1+y_2; (iv) nearly 2-homogeneous if for any two points x_1 and x_2 of M and any two subsets D_1 and D_2 of M that are open relative to M there exist two points y_1 and y_2 in D_1 and D_2, respectively, and a homeomorphism of M onto itself that carries x_1+x_2 onto y_1+y_2; (v) homogeneously embedded in a space S if for any two points x and y of M there is a homeomorphism of S onto itself that carries x into y and M onto itself.

Presented to the Society, November 22, 1958; received by the editors October 3, 1958.

1 This work was supported by the National Science Foundation under G-2574.
Theorem 1. If the nondegenerate continuous curve M is nearly homogeneous and is not a triod, then M is a simple closed curve.

Proof. There exist a closed subset K of M and two points p_1 and p_2 of M such that K is irreducible with respect to the property of separating p_1 from p_2 in M and $M - K$ is the sum of two mutually separated sets M_1 and M_2 that contain p_1 and p_2, respectively. Let G_1, G_2, G_3, \ldots be a sequence of finite collections of connected open subsets of M such that for each i, (1) G_i covers K, (2) each element of G_i intersects K and has a diameter less than $1/i$, and (3) each element of G_{i+1} is a subset of some element of G_i. There is a finite collection T_1 of arcs such that (1) T_1^* is connected, (2) each arc of T_1 intersects an element of G_1, and (3) each element of G_1 intersects an arc of T_1. Now define a sequence T_1, T_2, T_3, \ldots of finite collections of arcs such that for each $i \ (i > 1)$, (1) each arc of T_i is a subset of an element of G_{i-1} and intersects an arc of T_{i-1}, (2) each arc of T_i intersects an element of G_i, and (3) each element of G_i intersects an arc of T_i. Let K' denote the continuum $K + T_1^* + T_2^* + \ldots$.

Suppose that M is not a simple closed curve. That K' contains neither M_1 nor M_2 follows from the fact that a compact metric continuum is a simple closed curve provided it is nearly homogeneous and some arc in it contains a set that is open relative to that continuum. Hence $M - K'$ is the sum of two mutually separated sets M_1' and M_2', where $M_1' = M_1 - K' \ (i = 1, 2)$. Since $K' - K$ is nowhere dense in M and each point of K is a limit point of both M_1 and M_2, it follows that each point of K is a limit point of both M_1' and M_2'.

Now from the near-homogeneity of M, it follows that there is a homeomorphism f of M onto itself that carries some point x of K into M_1'. Then the point $f(x)$ is a limit point of both $f(M_1')$ and $f(M_2')$, so that M_1' intersects both $f(M_1')$ and $f(M_2')$. There exists an arc H in M such that $H + K' + f(K')$ is a continuum that is nowhere dense in M. Let $N = H + K' + f(K')$. Then $M - N$ is the sum of the three mutually separated sets $M_2' - N, M_1' \cdot f(M_1') - N$, and $M_1' \cdot f(M_2') - N$, and this is contrary to the hypothesis that M is not a triod. Hence M is a simple closed curve.

Question. If the continuous curve M has no local separating point and p_1 and p_2 are two points of M, then does there exist a subcontinuum K of M such that (1) $M - K$ is the sum of two mutually

\footnote{If L is a collection of point sets, then L^* denotes the set which is the sum of the elements of L.}

\footnote{This method of constructing K' is similar to a method used by Zippin [8], but his result is not directly applicable here.}
separated sets \(M_1 \) and \(M_2 \) containing \(p_1 \) and \(p_2 \), respectively, and (2) every point of \(K \) is a limit point of both \(M_1 \) and \(M_2 \)?

Theorem 2. If the decomposable compact metric continuum \(M \) is nearly 2-homogeneous and is not a triod, then \(M \) is a simple closed curve.

Proof. It follows from Theorem 15 of [3] that \(M \) is a continuous curve. Since \(M \) is nearly homogeneous, it follows from Theorem 1 that \(M \) is a simple closed curve.

Corollary. If the nondegenerate compact metric continuum \(M \) is 2-homogeneous and is not a triod, then \(M \) is a simple closed curve.

Theorem 3. If the nondegenerate bounded continuum \(M \) is homogeneously embedded in a plane \(E \), then \(M \) is a simple closed curve.

Proof. Suppose that \(M \) is not a simple closed curve. It follows from two results by F. B. Jones [4; 5] that some nondegenerate subcontinuum \(K \) of \(M \) is indecomposable. Mazurkiewicz [7] has shown that some point \(y \) of \(K \) is not accessible from the complement of \(K \), and hence \(y \) is not accessible from the complement of \(M \). Since some point \(x \) of \(M \) is accessible from the complement of \(M \), this leads to the contradiction that there is no homeomorphism of \(E \) onto itself that carries \(x \) into \(y \) and \(M \) onto itself.

Bibliography

University of Utah