DIFFEOMORPHISMS OF THE 2-SPHERE

STEPHEN SMALE

The object of this paper is to prove the theorem.

THEOREM A. The space Ω of all orientation preserving C^∞ diffeomorphisms of S^2 has as a strong deformation retract the rotation group $SO(3)$.

Here S^2 is the unit sphere in Euclidean 3-space, the topology on Ω is the C^r topology $\infty \geq r > 1$ (see [4]) and a diffeomorphism is a differentiable homeomorphism with differentiable inverse.

The method of proof uses

THEOREM B. The space \mathcal{F} (C^r topology) of C^∞ diffeomorphisms of the unit square which are the identity in some neighborhood of the boundary is contractible to a point.

The analogue of Theorem A for the topological case was proved by H. Kneser [2]. The problem in his case seems to be of a different nature from the differentiable case. J. Munkres [3] has proved that Ω is arcwise connected.

Conversations with R. Palais have been helpful in the preparation of this paper.

Let I^2 be the square in the Euclidean plane E^2 with coordinate (t, x) such that $(t, x) \in I^2$ if $0 \leq t \leq 1$ and $0 \leq x \leq 1$. Let $\bar{e}: I^2 \rightarrow I^2$ denote the identity diffeomorphism and \mathcal{F}, the space of diffeomorphisms, with the C^r topology, of I^2 onto I^2 which agree with \bar{e} on some neighborhood of ∂I^2, the boundary of I^2. The C^r topology is such that two maps are close with respect to it if they are close and their first r derivatives are close. See R. Thom [4] for details. We assume that r is fixed in this paper, $\infty \geq r > 1$, and that all function spaces considered possess the C^r topology. We further assume that all diffeomorphisms are C^∞.

Let $I_1 \subset I^2$ denote the subset $\{(t, x) \in I^2 | t = 1\}$, df_p be the differential of a diffeomorphism f at p, and u_0 be the vector $(1, 0)$ in E^2 considered as its own tangent vector space. Then denote by \mathcal{E} the space of diffeomorphisms of I^2 onto I^2 such that if $f \in \mathcal{E}$, then (a) $f = \bar{e}$ on some neighborhood of $I^2 - I_1$, and (b) $df_p(u_0) = u_0$ for all p in some neighborhood of I_1.

Received by the editors September 29, 1958.

1 The work on this paper was supported in part by a National Science Foundation Postdoctoral Fellowship.
Let $\tilde{e}_0: I^2 \to u_0$ be the constant map and define S to be the space with the compact open topology of maps of I^2 into S which agree with \tilde{e}_0 in some neighborhood of I^2, where $S = E^2 - (0, 0)$.

A map $\phi: \varepsilon \to S$ is defined as follows:

$$\phi(f)(t, x) = df^{-1}(t, x)(u_0),$$

$f \in \varepsilon$.

Lemma 1. There is a homotopy $\phi_v: \varepsilon \to S$ such that for each $f \in \varepsilon$,

(a) $\phi_v(f)(t, x)$ is C^∞ in (v, x, t),
(b) $\phi_0(f) = \tilde{e}_0$,
(c) $\phi_1 = \phi$, and
(d) $\phi_v(\tilde{e}) = \tilde{e}_0$.

Proof. Let $p: R \to S$ be the covering map where R is the universal covering space of S, and let $u \in p^{-1}(u_0)$. Let $T_v: R \to R$ be a differentiable contraction of R to u.

Define now a homotopy $h_v: S \to S$ by $h_v(f)(x) = pT_v(f(x))$ where f is the unique lifting of f taking I^2 into u. Then it is easily checked that $\phi_v = h_v \circ \phi$ may be taken as our desired homotopy.

Lemma 2. There is a homotopy $H_v: \varepsilon \to S$ such that for each $f \in \varepsilon$,

(a) $H_v(f)$ is C^∞ in (v, x, t),
(b) $H_0(f) = \tilde{e}$,
(c) $H_1(f) = f$, and
(d) $H_v(\tilde{e}) = \tilde{e}$.

Proof. Let $\phi_v(f)(t, x)$ be considered as a vector field on I^2 as given by Lemma 1, for each $f \in \varepsilon$ and $v \in I$, I the unit interval. Let $P_v(f)(u, t_0, x_0)$ be the integral curve of $\phi_v(f)$ with the initial condition $P_v(f)(0, t_0, x_0) = (t_0, x_0)$.

Define $Q_v(f)(t, x) = P_v(f)(t, 0, x)$.

Now suppose there were an integral curve $P_v(f)(u, t_0, x_0)$ starting at $(t_0, x_0) = (0, x)$ which did not leave I^2. If this were so then it would approach asymptotically some simple closed curve in I^2. In the interior of this curve the vector field $\phi_v(f)$ would have to have a singularity. But this is impossible. Thus we conclude that there is a t, say \tilde{t}, with $Q_v(f)(\tilde{t}, x)$ meeting I_1. This is exactly the part of the proof of Theorem A which does not extend to the case of S^n.

Denote the above \tilde{t} by $\tilde{t}(v, f, x)$. Then $\tilde{t}(v, f, x)$ is C^∞ in (v, x) continuous (v, f, x) and positive.

We need the following lemma which can be found for example in [1, p. 172].

Lemma 3. Let g be a real lower semi-continuous positive function on a paracompact space X. Then there is a real continuous function h on X such that for all $x \in X$, $0 < h(x) < g(x)$.
Let g be the function on \mathcal{S} defined by
\[
g(f) = \min \left\{ \frac{\tilde{l}(v, f, x)}{1 - \tilde{l}(v, f, x)}, 1 \right\}, v, x \in I, \tilde{l}(v, f, x) < 1.\]

Then let η be the function on \mathcal{S} given by Lemma 3.

Let γ be a real function on $\mathcal{S} \times \mathbb{R}$, C^∞ in t such that $\gamma(f, t) = 0$ for t in some neighborhood of 0, $\gamma(f, t) = 1$ for t in some neighborhood of 1 and
\[
0 < \frac{d\gamma(f, t)}{dt} < 1 + \eta(f).
\]

We leave to the reader the task of showing that such a function exists.

Now define $H_v: \mathcal{S} \to \mathcal{S}$ by
\[
H_v(f)(t, x) = Q_v(f)(t + \gamma(f, t)(\tilde{l}(v, f, x) - 1), x).
\]

We prove now that $H_v(f): I^2 \to I^2$ is regular (has Jacobian of rank 2). Note that $H_v(f)$ can be written as the composition $\psi \circ g$ where
\[
g: (t, x) \to (t + \gamma(f, t)(\tilde{l}(v, f, x) - 1), x) = (t', x'),
\]
\[
\psi: (t', x') \to Q_v(f)(t', x').
\]

From the choice of η it follows that $\partial t'/\partial t \neq 0$, and hence g is regular.

Now we prove that ψ is regular. Let
\[
\varphi(u, t, x) = P_v(f)(u, t, x) \quad \text{and} \quad \varphi^i(u, t, x), \quad i = 1, 2
\]
be the coordinates of φ. Also let $X(t, x)$ denote the vector field $\phi_v(f)$ with
\[
X(t, x) = X_1(t, x) \frac{\partial}{\partial t} + X_2(t, x) \frac{\partial}{\partial x}.
\]

Then $\psi(t, x) = \varphi(t, 0, x)$. It is sufficient to prove ψ^{-1} is differentiable. Let $\tau(t, x)$ be the unique u such that $\varphi^1(u, t, x) = 0$. Then $\psi^{-1}(t, x) = (-\tau(t, x), \varphi^1(\tau(t, x), t, x), \varphi^2(\tau(t, x), t, x))$. The map ψ^{-1} is differentiable if τ is and τ is differentiable if
\[
\left. \frac{\partial \varphi^1(u, t, x)}{\partial u} \right|_{u=\tau(t, x)} \neq 0.
\]

But
\[
\left. \frac{\partial \varphi^1(u, t, x)}{\partial u} \right|_{u=\tau(t, x)} = X_1(\varphi(\tau(t, x), t, x)) = X_1(0, \varphi^2) = 1.
\]
It is easy now to check that H_* is our required homotopy.

The following amplifies Theorem B.

Theorem 4. The space \mathcal{S} is contractible. In fact there is a homotopy $G_v: \mathcal{S} \to \mathcal{S}$ such that for each $f \in \mathcal{S}$,

(a) $G_v(f)(x, t)$ is C^∞ in (v, x, t),
(b) $G_0(f) = \bar{e}$,
(c) $G_1(f) = f$, and
(d) $G_v(e) = e$.

Proof. Let $E_{\mathcal{S}}$ be the space of diffeomorphisms of I into I which agree with the identity in some neighborhood of the boundary I. Let $K_v: E_{\mathcal{S}} \to E_{\mathcal{S}}$ be defined by $K_v(f) = f(t)v + t(1-v)$. Then $K_v(f)(t)$ is C^∞ in (t, v), $K_0(f)(t) = t$, $K_1(f) = f$, and if e is the identity $K_v(e) = e$.

Let H_v be as in Lemma 2, and define $h_v = H_v(h)$ for each $h \in \mathcal{S}$. Let \mathcal{H}_v denote h_v restricted to I_1. Let $\beta(t)$ be a C^∞ function of t such that $\beta(t) = 0$ in a neighborhood of 0, $\beta(t) = 0$ in a neighborhood of 1.

The desired homotopy $G_v: \mathcal{S} \to \mathcal{S}$ is defined as follows.

$$G_v(h)(t, x) = (t', [K_{\beta(t)}(\mathcal{H}_{t^{-1}})](x'))$$

where t' and x' are the t and x components respectively of $h_v(t, x)$. The map $(t, x) \to (t', x')$ is a diffeomorphism because h_v is. It is easily checked that

$$(t', x') \to (t', [K_{\beta(t)}(\mathcal{H}_{t^{-1}})](x'))$$

is a diffeomorphism. Hence the composition $G_v(h)$ is also a diffeomorphism. One can further check that $G_v(h)$ satisfies all the properties demanded by the theorem.

Let S^2 be the unit sphere in E^3 with Cartesian coordinates (x, y, z) and x_0 the South Pole. Let e_1, e_2 be unit tangent vectors of S^2 at x_0 in the directions of the x and y axes respectively. Let Ω_0 be the space of diffeomorphisms of S^2 such that if $f \in \Omega_0$ then $f(x_0) = x_0$ and $df_{x_0}(e_i) = e_i$, $i = 1, 2$.

Theorem 5. The space Ω_0 is contractible in the sense of Theorem 4.

Proof. Let E be the open southern hemisphere of S^2. Then E^3 induces a natural Euclidean coordinate system on E and the tangent bundle T of E. We will use these coordinates to add points on E and T.

Let $g: \Omega_0 \to \mathbb{R}$ be defined by

$$g(f) = \sup \{ q \leq 1 \mid \text{for all } X \in T(N_q(x_0)), \ |df(X) - X| < 1 \}$$

where $T(N_q(x_0))$ is the unit tangent bundle of $N_q(x_0)$. Then g is
lower semi-continuous. Hence by Lemma 3 let ϵ be a positive continuous function on Ω_0 such that $|df(X) - X| < 1$ for $X \in T(N_{\epsilon(f)}(x_0))$ and $f \in \Omega_0$.

Let γ be a function on $\Omega_0 \times S^2$, with $\gamma(f, x)$ C^∞ for each f and such that $\gamma(f, x) = 1$ for $x \in N_{\epsilon(f)/2}(x_0)$ and $\gamma(f, x) = 0$ for x in the complement of $N_{\epsilon(f)}(x_0)$.

Define $S_\nu: \Omega_0 \to \Omega_0$ by

$$S_\nu(f)(x) = (1 - \nu)f(x) + \nu[\gamma(f, x)x + (1 - \gamma(f, x))f(x)].$$

Then $S_0(f) = f$ and $S_1(f)$ agrees with the identity on $N_{\epsilon(f)/2}(x_0)$.

Let $\rho: S^2 - x_0 \to E^2$ be stereographic projection using x_0 as pole with E^2 being the $x - y$ plane of E^3. Let I^2_M denote the square in E^2 with center $(0, 0)$ and with sides of length M which are parallel to the axes. Let $D_M: I^2_M \to I^2_1$ be the obvious canonical diffeomorphism onto.

Let M be a positive continuous function on Ω_0 such that $p^{-1}(\text{exterior } I^2_M(x_0)) \subset N_{\epsilon(f)/2}(x_0)$. Let \mathcal{F} be the space of diffeomorphisms of E^2 which are the identity in a neighborhood of I^2_1 and outside I^2_1. Then let $G_\nu: \mathcal{F} \to \mathcal{F}$ be as in Theorem 4. Let a homotopy $F_\nu: \Omega_0 \to \Omega_0$ be defined by

$$F_\nu(f)(x) = b^{-1}[G_\nu(bfb^{-1})]b(x), \quad b = D_M \rho, \quad x \in N_{\epsilon(f)/2}(x_0),$$

$$F_\nu(f)(x) = f(x) \quad x \in N_{\epsilon(f)/2}(x_0).$$

Let $\beta(v)$ be a C^∞ function which is 0 in a neighborhood of 0 and 1 in a neighborhood of $1/2$. Let $\gamma(v)$ be a C^∞ function which is 0 in a neighborhood of $1/2$ and 1 in a neighborhood of 1. Then we define our desired contraction $T_\nu: \Omega_0 \to \Omega_0$ by

$$T_\nu = S_{\beta(v)}, \quad 0 \leq v \leq 1/2,$$

$$T_\nu = F_{\gamma(v)}, \quad 1/2 \leq v \leq 1.$$

The following amplifies Theorem A.

Theorem 6. The space Ω of all orientation preserving diffeomorphisms of S^2 has as a deformation retract the rotation group $SO(3)$. In fact there is a homotopy $H_\nu: \Omega \to \Omega$ such that for each $f \in \Omega$

(a) $H_\nu(f)(x)$ is C^∞ in (v, x),

(b) $H_0(f) = f$,

(c) $H_1(f)$ is a rotation of S^2, and

(d) if $f \in SO(3)$, $H_\nu(f) = f$.

Proof. Define Ω_0 as the subspace of Ω with the property that for $f \in \Omega_0$, $e^1(f) = df_{x_0}(e_1)$ and $e^2(f) = df_{x_0}(e_2)$ are orthonormal. We first show that Ω_0 is a deformation retract of Ω.

If $f \in \Omega$, let v_0 be the unit vector perpendicular to $e^1(f)$ in $S_f(x_0)$ the
tangent space of S^2 at $f(x_0)$, and u_0 be $e^1(f)$ normalized. Then define

$$e_t^1(f) = (1 - t)e^1(f) + tu_0,$$

$$e_t^2(f) = (1 - t)e^2(f) + tv_0$$

Let g_t be the linear transformation which sends $(e^1(f), e^2(f))$ into $(e_t^1(f), e_t^2(f))$. Let $p: S^2 \to S_{f(x_0)}$ be the natural projection. By Lemma 3, choose a positive continuous function ε on Ω with $\varepsilon(f) < 1$, such that for a unit tangent vector X in the tangent space of $N_{e(f)}(f(x_0))$, $d(p^{-1}g_t p)(X)$ and X are independent.

Let γ be a function on $\Omega \times S^2$ such that for each $f \in \Omega$, $\gamma(f, x)$ is C^∞, is zero outside $N_{e(f)}(f(x_0))$ and is 1 on $N_{e(f)}/2(f(x_0))$. Let p induce an affine structure on the hemisphere of S^2 with center $f(x_0)$. Define $G_\varepsilon: \Omega \to \Omega$ by

$$G_\varepsilon(f)(x) = \gamma(f, x)p^{-1}g_\varepsilon p(x) + (1 - \gamma(f, x))x.$$

Then G_ε retracts Ω onto Ω.

We now define a retraction of Ω onto $SO(3)$. For each $f \in \Omega$ let $\alpha(f) \in SO(3)$ be the rotation sending $(f(x_0), df(e_1), df(e_2))$ into (x_0, e_1, e_2). Then define $K_\varepsilon: \Omega \to \Omega$ by $K_\varepsilon(f) = T_\varepsilon(f \circ \alpha(f))\alpha(f)^{-1}$ where T_ε is as in Theorem 5.

The desired homotopy $H_\varepsilon: \Omega \to \Omega$ is obtained by composing G_ε and K_ε as in the proof of the previous theorem.

References

Institute for Advanced Study