1. Introduction. Let \(f(z) \) be an entire function of finite order \(\rho \). If the genus \(p \) of the canonical product (c.p.) formed with zeros of \(f(z) \) is equal to the genus of \(f(z) \), then it is known\(^1\) that \([9; 10]\)

\[
\lim_{r \to \infty} \inf \frac{\log M(r)}{n(r, 0)\phi(r)} = 0
\]

where \(\phi(r) \) is any positive nondecreasing function such that

\[
\int_{1}^{\infty} \frac{dt}{t\phi(t)}
\]

is convergent. Another proof of this theorem is given by Boas \([2]\) where he assumes only that \(\phi(r) \) is positive and (1) exists. Following the method of Boas, Shanker Hari has shown in a paper under publication that if \(f(z) \) is a c.p. of order and genus \(\rho \) then

\[
\lim_{r \to \infty} \inf \frac{\log M(r)}{N(r, 0)\phi(r)} = 0.
\]

In this paper we prove a more general theorem by the method given in \([9; 10]\).

Let \(G, p_1, p_2 \) denote respectively the genus of a meromorphic function \(f(z) \), the genus of the c.p. \(P_1 \) formed with zeros of \(f \) and the genus of the c.p. \(P_2 \) formed with poles of \(f \). Write\(^2\) \(S = \max(p_1, p_2) \), \(n(t) = n(t, f-0) + n(t, f-\infty) \), \(n_1(t) = n(t, P_1-0) + n(t, P_2-0) \). Let \(k \) denote any constant \(\geq 1 \), \(\phi(x) \) any positive nondecreasing function such that (1) exists, \((a_i(z)) \), \(i = 0, 1, \ldots, l \) any meromorphic functions (including rational functions or finite constants) such that

\[
T(r, a_i(z)) = o(T(r, f)), \quad i = 0, 1, \ldots, l
\]

and \(g_0(z) = g(z), g_1(z), g_2(z) \) any meromorphic functions (including rational functions or constants, finite or infinite) such that

\[
T(r, g_i(z)) = o(T(r, f)), \quad i = 0, 1, 2.
\]

\(^1\) For notations see 7 \([7; 8]\).
\(^2\) The function \(n(r, f-g) \) denotes the number of zeros of \(f-g \) in \(|z| \leq r \). If \(g \) is infinite constant, then \(N(r, 1/(f-g)) = N(r, f) \).
Write
\[\psi(f) = \sum_{i=0}^{l} a_i(z)f^{(i)}(z), \quad \psi(f - g_1) = \sum_{i=0}^{l} a_i(z)\{f^{(i)}(z) - g_1^{(i)}(z)\} \]
when \(g_1 \) is not infinite constant; we suppose that \((a_i)\) are so chosen that neither \(\psi(f)\) nor \(\psi(f - g_1)\) reduces identically to a constant.

Theorem 1. Let \(f(z) \) be a meromorphic function of integer order \(\rho \).

(a) If \(G = S \), then
\[\liminf_{r \to \infty} \frac{T(kr, f)}{\frac{1}{\psi(f) - 1}} \leq k^{1+S}B(S), \]
\[\liminf_{r \to \infty} \frac{T(kr, f)}{n(r, f - g_1) + n(r, f - g_2)} \leq k^{1+S}(S + 1)B(S) \]
where
\[S = [\rho], \quad A(S) = \begin{cases} 2 & \text{if } S = 0, \\ 2e(2 + \log S)(S + 1)^2/S & \text{if } S \geq 1, \end{cases} \]
and
\[B(S) = A(S)/(\rho - S)(1 + S - \rho) \]
and \(g_1, g_2 \) are any two distinct functions satisfying (3).

Corollary.
\[\liminf_{r \to \infty} \frac{T(r, f)}{n(r, f - g)} \leq 2B(S), \]
Theorem 3. Let $f(z)$ be an entire function of order p and let, when $\rho > 0$, $h(\rho) = (\rho + (1 + \rho^2)^{1/2})(1 + (1 + \rho^2)^{1/2})^p/\rho^p$. If $\rho > 0$, then

(15) \[\liminf_{r \to \infty} \frac{\log M(kr)}{n(r, f - g)} \leq \frac{2k^p h(\rho)}{\rho}, \]

(16) \[\liminf_{r \to \infty} \frac{\log M(kr)}{N(r, 1/(f - g))} \leq 2k^p h(\rho) \]

for every entire function $g(z)$ (including a polynomial or a finite constant) satisfying (3), with one possible exception. If $\rho = 0$, then

(17) \[\liminf_{r \to \infty} \frac{\log M(kr)}{N(r, 1/(f - g))} = 1 \]

for every entire function $g(z)$ such that $M(r, g) = o(M(r, f))$.

Theorem 4. Let $f(z)$ be a meromorphic function of order p. If $\rho > 0$, then
for every meromorphic function $g(z)$ satisfying (3), with two possible exceptions. If $\rho = 0$ then

\begin{equation}
(20) \quad \liminf_{r \to \infty} \frac{T(kr, f)}{N(r, 1/(f - g_1)) + N(r, 1/(f - g_2))} \leq 1
\end{equation}

where g_1, g_2 are any two distinct functions satisfying (3).

2. Remarks. (i) Let $\delta(\alpha)$ denote Nevanlinna defect. If $\sum \delta(\alpha) < 2$, then $G = S$ and (4) holds. If $\sum \delta(\alpha) = 2$, then (4) may or may not hold. (See [13, pp. 590–591] for an entire function of which the genus is greater than the genus of its cp. and for which $\sum \delta(\alpha) = 2$ and (4) holds.) Conversely if (4) holds, then $\sum \delta(\alpha)$ may have its maximum value 2 or $\sum \delta(\alpha) < 2$ ($f(z) = \sin z$). If (4) does not hold then $G > S$, $\delta(0) = \delta(\infty) = 1$.

(ii) For entire functions of order ρ, $0 \leq \rho < 1$, it is known that

\begin{equation}
(11) \quad \liminf_{r \to \infty} \frac{\log M(r)}{N(r, a)} \leq \frac{1}{1 - \rho}
\end{equation}

and for meromorphic functions of order ρ, $0 \leq \rho < 1$, it is known that

\begin{equation}
(12) \quad \liminf_{r \to \infty} \frac{T(r)}{N(r, a) + N(r, b)} \leq \frac{1}{1 - \rho}.
\end{equation}

More precise results in this direction have been given by Edrei and Fuchs [4].

(iii) For entire functions of noninteger order $\rho > 0$, it is known that

\begin{equation}
L(f, a) = \liminf_{r \to \infty} \frac{\log M(r)}{n(r, f - a)} < \infty
\end{equation}

for every finite a. A sharp upper bound for $L(f, a)$ when $\rho > 1$, is not known but by (15) $L(f, a) \leq 2h(\rho)/\rho$ except possibly for one value of a. This exceptional value may exist. Consider [7, pp. 18–19]

\begin{equation}
f(z) = \prod_{n=1}^{\infty} E \left(\frac{z}{a_n}, \rho \right), \quad a_n = -n^{1/\rho}, \quad \rho < \rho < \rho + 1.
\end{equation}

$f(z)$ is an entire function of order ρ and
\[
\log M(r)/n(r, 0) \sim \frac{\zeta}{\text{Sin } \zeta (\rho - \rho)}
\]

which can be made greater than \(2h(\rho)/\rho\) by choosing \(\rho - \rho\) sufficiently small.

(iv) If (15), (16), (18) or (19) do not hold for \(g = g_1\) then we can obtain relations similar to (11)–(14). For instance if (15) or (16) does not hold when \(g = g_1\), then

\[
\lim \inf_{r \to \infty} \frac{T(r, f)}{N(r, 1/(\psi(f - g_1) - 1))} \leq 2.
\]

3. Theorem 1.

Lemma 1. If \(f(z) = z^a \exp(Q(z)) P_1(z)/P_2(z)\) is a proper meromorphic function of order \(\rho \geq 0\) such that \(G = S\), then for all \(r > r_0\)

\[
T(kr, f) \leq A(S) k^{1+S} J(r, S)
\]

where

\[
A(S) =\begin{cases}
2 & \text{if } S = 0, \\
2e(2 + \log S)(S + 1)^2/S & \text{if } S \geq 1,
\end{cases}
\]

and

\[
J(r, S) = r^{1+S} \int_0^\infty \frac{n_1(t) dt}{t^{1+S}(l + r)}.
\]

Proof. We have

\[
T(kr, f) = O(r^S + \log r) + \log M(kr, P_1) + \log M(kr, P_2)
\]

and when \(p_1 \geq 1\) [8, pp. 225–226]

\[
\log M(kr, P_1) \leq (2 + 1/p_1)e(2 + \log p_1)(1 + p_1) k^{1+p_1 + p_1} \int_0^\infty \frac{n(t, P_1 - 0) dt}{t^{1+p_1}(l + kr)}.
\]

Hence, when \(p_1 = p_2 \geq 1\),

\[
T(kr, f) \leq \frac{2e(2 + \log S)(1 + S)^2}{S} k^{1+S} J(r, S).
\]

If \(p_1 = p_2 = 0\), then

\[
T(kr, f) < O(\log r) + kr \int_0^\infty \frac{n_1(t) dt}{t(t + kr)}.
\]

\[f\] is not a rational function.

\[4\] We can take \(A(0) = 1 + c\), where \(c\) is any positive number.
If \(p_1 > p_2 \) then \(\log M(kr, P_2) = o(r^{1+p_2}) = o(r^{p_1}) \) and a similar result if \(p_1 < p_2 \). Hence the lemma is proved.

Lemma 2. If \(f(z) \) is a proper meromorphic function of finite order and

\[
\psi(f) = \psi(z) = \sum_{0}^{1} a_i(z) f^{(i)}(z)
\]

then

\[
(21) \quad (1 + o(1))T(r,f) < N(r,f) + N \left(r, \frac{1}{\psi(f) - 1} \right) + N \left(r, \frac{1}{f} \right).
\]

This lemma is substantially contained in Theorem 7 of [5].

Lemma 3. If \(f(z) = e^{x} \exp(Q(z))P_1(z)/P_2(z) \) and \(G > S \) then \(Q(z) = a_n z^n + \cdots, |a_n| = A \neq 0 \) and

(i) \(T(r,f) \sim Ar^n \),

(ii) \(T(r,f') \sim Ar^n \),

(iii) \(T(r,\psi) = T(r, \sum a_i f^{(i)}) \sim Ar^n \).

Proof. Write \(f = b_0 \exp(Q) \) where \(b_0 = e^{x} P_1 P_2^{-1} \),

\[
T(r,f) \leq T(r, \exp Q) + T(r, b_0),
\]

\[
T(r, \exp Q) \leq T(r,f) + T(r, b_0) + O(1)
\]

and since \(T(r, \exp Q) \sim Ar^n \), \(T(r, b_0) = o(r^n) \), (i) follows.

\[
\begin{align*}
\exp Q &= f(t)/\sum a_i b_i, \\
&= e^{x} b_1 (say).
\end{align*}
\]

Then \(T(r, b_1) = o(r^n) \) and so \(T(r,f') \sim Ar^n \).

(iii) \(f'' = (\exp Q)b_2 \) where \(T(r,b_2) = o(r^n) \) and so on. Hence

\[
T(r,\psi(f)) = T(r, (\exp Q) \sum a_i b_i)
\]

\[
\leq T(r, \exp Q) + T(r, \sum a_i b_i)
\]

\[
\leq (A + o(1)) r^n + \sum T(r, a_i) + \sum T(r, b_i)
\]

\[
= (A + o(1)) r^n.
\]

Also

\[
\exp Q = \psi(f)/\sum a_i b_i, \quad T(r, \exp Q) \leq T(r, \psi(f)) + o(r^n)
\]

and hence \(T(r, \psi(f)) \sim Ar^n \).

(a) **Proof of** (4). Since \(\rho \geq 1 \) and \(G = S \), \(n(x) \) tends to infinity with

\[8 (4) \text{ can also be proved by the method given in [12, pp. 696–697].}\]
Further $T(kr, f) \sim T(kr, f^{\alpha v})$ where υ is any integer and so we may suppose $f(0) \neq 0, \neq \infty$. Then $f(z) = \exp(Q(z))P_1(z)/P_2(z)$. Since $G = S$, we have $S = \rho$ or $\rho - 1$. Consider first when $S = \rho$. If $n(x) = O(x^S)$ we have

$$J(r, S) < c_1 r^S \int_0^r \frac{n(x)dx}{x^{1+S}}$$

and hence from Lemma 1 of [9, p. 24] we get

$$\lim \inf_{r \to \infty} J(r, S)/n(r)p(r) = 0.$$

If $\limsup_{x \to \infty} n(x)/x^S = \infty$, we write $y = \log x$ and $\log (n(x)/x^S) = \log \mu(x) = \psi(y)$. Then $\limsup_{y \to \infty} \psi(y) = \infty$, and since $f(z)$ is of order $\rho = S$, $\limsup_{y \to \infty} \psi(y)/y = 0$. Apply Lemma 2 of [9, p. 25]. There exists a sequence $r_n \uparrow \infty$ for which

$$\mu(x) < \mu(r_n), \quad \Delta < x < r_n,$$

$$\frac{\log \mu(x)}{\log \mu(r_n)} < \frac{\log \mu(r_n)}{\log r_n}, \quad x > r_n.$$

Hence

$$J(r_n, S) < c_2 n(r_n) \log r_n.$$

Consider now $S = \rho - 1$. Given $\phi(x)$ we can find [10] a function $\phi_1(x)$ such that for all large x: (i) $\phi_1(x) \leq \phi(x)$; (ii) $\phi_1(x)/x^\alpha$ is nonincreasing, α being a positive number less than unity; (iii) $\int_1^\infty dt/t\phi_1(t)$ is convergent. If now

$$\limsup_{x \to \infty} n(x)\phi_1(x)/x^{1+S} > 0,$$

then for a sequence $R_n \uparrow \infty$, $J(R_n, S) = o(n(R_n)\phi_1(R_n))$. If $n(x)\phi_1(x) = o(x^{1+S})$ then we choose in Lemma 3 of [10, p. 184] $0 < \beta < 1 - \alpha$, $\theta(x) = x^\beta$, $\Psi(x) = n(x)\phi_1(x)/x^{S + 1 - \beta}$ and obtain for $x_n \uparrow \infty$, $J(x_n, S) = o(\phi(x_n)n(x_n))$ and (2) is proved.

Since $n(r, a) \leq N(2r, a)/\log 2$, (5) follows from (4).

(b) PROOF OF (6). By hypothesis

$$N(r, f) = o(r^\rho), \quad N(r, 1/f) = o(r^\rho),$$

and so from (21)

$$(1 + o(1))T(r, f) < N(r, 1/(\psi(f) - 1)) < T(r, \psi(f)) + O(1)$$

and so (6) follows from Lemma 3(i) and (iii).
4. Theorems 2, 3, 4.

Lemma 4. If \(f(z) \) is a meromorphic function of order \(\rho > 0 \), then

\[
I_1(r) = \int_1^r \frac{T(kt, f)}{t} \, dt < \frac{k^\rho}{\rho} (1 + \epsilon) T(r, f)
\]

for a sequence of values of \(r \) tending to infinity.

Lemma 5. If \(f(z) \) is an entire function of order \(\rho > 0 \), then

\[
I_2(r) = \int_1^r \frac{\log M(kt)}{t} \, dt < \frac{k^\rho}{\rho} h(\rho)(1 + \epsilon) T(r, f)
\]

where \(h(\rho) \) has been defined in the statement of Theorem 3, for a sequence of values of \(r \) tending to infinity.

The proof of Lemma 4 is straightforward (cf. [14, p. 321]) and the proof of Lemma 5 depends on the relation

\[
\log M(r) \leq \frac{h + 1}{h - 1} T(hr), \quad h > 1.
\]

We obtain for a sequence of values of \(r \to \infty \),

\[
I_2(r) \leq \frac{h + 1}{h - 1} \frac{h^\rho k^\rho}{\rho} (1 + \epsilon) T(r).
\]

Choose \(h = (1 + (1 + \rho^2)^{1/2})/\rho \).

(a) Proof of (7). We have \(S = [\rho] \)

\[
T(kr, f) < A(S) k^{1+S} J(r, S), \quad r > r_0.
\]

We choose in Lemma 3 of [10, p. 184] (see also [12, p. 69]) \(\Psi(x) = n_1(x)/x^{\rho - \epsilon} \) and obtain that for \(r = r_n \uparrow \infty \)

\[
T(kr_n, f) < B(S)(1 + \epsilon') k^{1+S} n(r_n).
\]

Let \(H(z) = (f(z) - g_1(z))/\left(f(z) - g_2(z)\right) \), \(g_1 \neq \infty \), \(g_2 \neq \infty \). Then \(T(r, H) \sim T(r, f) \). Also for a sequence \(R_n \uparrow \infty \),

\[
T(kR_n, H) < B(S)(1 + \epsilon') k^{1+S} \left\{ n(R_n, H - 0) + n(R_n, H - \infty) \right\}.
\]

Now

\[
n(R_n, H - 0) + n(R_n, H - \infty) < \sum_{i=1}^2 n(R_n, f - g_i) + \sum_{i=1}^2 n(R_n, g_i - \infty).
\]

Suppose now \(k > 1 \). Then

\[
n(R_n, g_i - \infty) < N(kR_n, g_i)/\log k = o(T(kR_n, f)).
\]
Hence for \(n > n_1 \)

\[
T(kR_n, f) < B(S)(1 + \varepsilon')k^{1+s}\sum_{i=1}^{n} n(R_n, f - g_i).
\]

If we take \(H(z) = f(z) - g_2(z), \ g_2 \neq \infty \), we get for another \(\{ R_n \} \uparrow \infty \),

\[
T(kR_n, f) < B(S)(1 + \varepsilon')k^{1+s}\{ n(R_n, f - \infty) + n(R_n, f - g_2) \}
\]

and so from (22) and (23)

\[
\liminf_{r \to \infty} \frac{T(kr, f)}{\sum_{i=1}^{n} n(r, f - g_i)} \leq B(S)k^{1+s}
\]

and (7) is proved when \(k > 1 \). Further \(k \) can be chosen arbitrarily near to 1 in the relation

\[
\liminf_{r \to \infty} \frac{T(r, f)}{\sum_{i=1}^{n} n(r, f - g_i)} \leq B(S)k^{1+s}
\]

and so (7) is true when \(k \geq 1 \).

Proof of (8). Write

\[
N_1(t) = \int_0^t \{ n_1(t)/t \} dt; \quad N(t) = N(t, f) + N(t, 1/f).
\]

Then

\[
J(r, S) = \int_0^\infty \frac{r^{1+s}N_1(t)dt}{t^{1+s}(t + r)}
\]

\[
< (S + 1) \left\{ r^s \int_0^r \frac{N_1(t)dt}{t^{1+s}} + r^{1+s} \int_r^\infty \frac{N_1(t)dt}{t^{2+s}} \right\}
\]

\[
< (S + 1)(1 + \varepsilon) \left\{ r^s \int_{x_0}^r \frac{[N(t)]dt}{t^{1+s}} + r^{1+s} \int_r^\infty \frac{[N(t)]dt}{t^{s+2}} \right\}
\]

if \(r > x_1(\varepsilon) \). Hence by Lemma 3 of [10, p. 184] we get

\[
\liminf_{r \to \infty} \frac{T(kr, f)}{N(r)} \leq B(S)(1 + S)k^{1+s}
\]

and the rest of the argument is the same as for (7). Hence (8) is proved. The Corollary follows from (7) and (8).

(b) If (10) is false for \(g = g_1 \neq \infty \), then

\[
\liminf_{r \to \infty} \frac{T(r, f)}{N(r, 1/(f - g_1))} = \beta > 2(S + 1)B(S).
\]
Hence for all \(r > r_0(\epsilon) \),
\[
T(r, f) > (\beta - \epsilon) N(r, 1/(f - g_1))
\]
We apply Lemma 2 to \(f - g_1 \) and obtain
\[
\{1 + o(1)\} T(r, f - g_1)
\leq N(r, f - g_1) + N\left(r, \frac{1}{\psi(f - g_1) - 1}\right) + N\left(r, \frac{1}{f - g_1}\right),
\]
and for \(r > r_1(\epsilon) \)
\[
\left(1 - \frac{1}{\beta - \epsilon} - \epsilon\right) T(r, f) \leq N(r, f) + N\left(r, \frac{1}{\psi(f - g_1) - 1}\right).
\]
Hence for \(r > r_2 \)
\[
T(r, f) < \left\{ \frac{2(S + 1)B(S)}{2(S + 1)B(S) - 1} \right\} \left\{ N(r, f) + N\left(r, \frac{1}{\psi(f - g_1) - 1}\right) \right\}.
\]
The proof of (12) is similar.

(c) We omit the proofs of (13)–(14) which can be proved with the help of Lemma 4.

(d) The first part of Theorem 3 follows from Lemma 5 and (17) follows from a result of Boas [1, pp. 6–7; 3, p. 48]. We omit the proofs of Theorems 3 and 4.

5. Example. We show that (4), (5) are best possible in the sense that \(k \) cannot be replaced by a function \(\alpha(r) \) tending to infinity with \(r \).
We prove that given \(\alpha(r) \to \infty \) with \(r \), there is a function \(\phi(x) \) such that
(1) exists, and an entire function \((c.p.) f(z)\) of integer order \(\rho \) and genus \(p - 1 \) such that
\[
\liminf_{r \to \infty} \frac{T(r\alpha(r), f)}{N(r, 0)\phi(r)} = \liminf_{r \to \infty} \frac{T(r\alpha(r), f)}{n(r, 0)\phi(r)} \geq \frac{1}{l(1 + 2^{1/2})^2} \quad \text{if } \rho = 1
\]
\[
= \infty \quad \text{if } \rho > 1.
\]
(a) We suppose that \(\alpha(r) \) satisfies the following:
(i) \(\alpha(r) > 0 \) for \(r \geq x_0 > 0 \) and tends to infinity with \(r \).
(ii) \(\alpha'(r) > 0 \) and \(r\alpha'(r) \downarrow \) for \(r \geq x_0 \).
(iii) \(r^2\alpha'(r)/\alpha^2(r) \) is strictly increasing for \(r \geq x_0 \). For instance we can take \(\alpha(r) = l_k r, \ k = 1, 2, \ldots, \ (l_k = \log k); \ l_k(r) = \log (l_{k-1} r) \). A function of slower growth and satisfying (i)–(iii) is given by the functional equation \(\alpha(e^x) = e\alpha(x) \). Let
\[
\phi(x) = \frac{\alpha^2(x)}{x\alpha'(x)} \quad x \geq x_0,
\]
\[
= \phi(x_0) \quad 0 \leq x < x_0,
\]
\[n(x, 0) = \left\lfloor \frac{x}{\phi(x)} \right\rfloor \quad x \geq x_0, \]
\[= 0 \quad 0 \leq x < x_0. \]

From (ii), (iii) it is seen that \(\phi(x) \) and \(x/\phi(x) \) ↑ with \(x \). Further

\[(26) \int_0^x \frac{n(t, 0)}{t^2} dt < \int_{x_0}^x \frac{dt}{t\phi(t)} \to \frac{1}{\alpha(x_0)} \]

as \(X \to \infty \). Hence (1) is convergent. Write \(R = r\alpha(r) \). Then

\[\alpha(R) - \alpha(r) = \int_r^R \alpha'(t) dt = o(\alpha(R)). \]

Hence \(\alpha(R) \sim \alpha(r) \) and so \(\alpha(r) \) is "slowly increasing" function \([6]\) and

\[\alpha(r) = o(r^\delta), \quad \delta > 0, \quad \int_{x_0}^r \frac{dt}{\alpha(t)} \sim \frac{r}{\alpha(r)}. \]

From (ii) we have \(\alpha(r) = o(\phi(r)) \). Let

\[f(z) = \prod_{1}^{\infty} \left(1 + \frac{z}{r_n} \right) \]

where \(r_n > 0, n = 1, 2, \ldots, \) and are given by \(n(x, 0) \). (The first few zeros may be equal; cf. \([8, p. 228]\).) From (26) we see that the series \(\sum 1/r_n \) is convergent and \(f(z) \) is an entire function (c.p.) of genus \(p = 0 \). Now

\[\log M(r) < r \int_0^r \frac{n(t, 0)}{t} dt + r \int_r^\infty \frac{n(t, 0)}{t^2} dt \leq \left\{ 1 + o(1) \right\} \frac{r}{\alpha(r)}, \]

\[\log M(r) > r \int_r^\infty \frac{n(t, 0)dt}{t(t + r)} > r \int_r^\infty \left\{ \frac{t}{\phi(t)} - 1 \right\} \frac{dt}{t(t + r)} = \frac{r}{\alpha(r)} \left\{ 1 + o(1) \right\}. \]

Hence

\[\log M(r) \sim r/\alpha(r), \log M(R) \sim r, n(r, 0)\phi(r) \sim r \sim N(r, 0)\phi(r), \]

\[T(R) \geq \frac{\beta - 1}{\beta + 1} \log M \left(\frac{R}{\beta} \right), \quad \beta > 1, \]

\[\sim \frac{\beta - 1}{\beta + 1} \frac{R}{\beta \alpha(r)} = \frac{\beta - 1}{\beta + 1} \frac{r}{\beta}. \]

Choose \(\beta = 1 + 2^{1/2} \) and (25) follows when \(\rho = 1 \).
(b) If $\rho > 1$ then let
\[f(z) = \prod_{n=1}^{\infty} \left(1 + \frac{z^\rho}{r_n} \right) \]
where r_n have been defined in (a). $f(z)$ is an entire function (c.p.) of order ρ and genus $\rho - 1$. We have for all $r > r_0$
\[\log M(kr, f) < c_n(r, f - 0)\phi(r)/\alpha(r), \]
\[\log M(R, f) \geq \frac{1}{\rho} \left(1 + o(1) \right) (\alpha(r)^{\rho-1}n(r, f - 0)\phi(r), \]
\[T(R, f) > c_4(\alpha(r))^{\rho-1}n(r, f - 0)\phi(r), \]
\[T(R, f) > c_4(\alpha(r))^{\rho-1}N(r, 1/f)\phi(r) \]
and (25) is proved for $\rho > 1$.

REFERENCES

UNIVERSITY OF WISCONSIN AND
MUSLIM UNIVERSITY, ALIGARH, INDIA