CERTAIN COLLECTIONS OF ARCS IN E^3

B. J. BALL

1. Introduction. In considering upper semicontinuous decompositions of E^3, it is sometimes useful to know whether a given collection of continua can be transformed, by a homeomorphism of E^3 onto itself, into another collection which is simpler in some respects; for example, a collection of straight line intervals might be transformed into a collection of vertical intervals, or a collection of arcs into a collection of straight line intervals. It might also be useful to know conditions under which such a transformation can be effected by means of a particular type of homeomorphism of E^3 onto itself.

In this paper, the following questions of this type will be considered. Suppose α and β are horizontal planes and G is a continuous collection of mutually exclusive arcs, each of which is irreducible from α to β and no one of which contains two points of any horizontal plane, such that the sum of the elements of G is compact and intersects α in a totally disconnected set. Under what conditions is there a homeomorphism of E^3 onto itself which takes each element of G onto a vertical interval and does not change the z-coordinate of any point?

It is shown, with the aid of certain results due to Bing [1] and Fort [5], that such a transformation is not always possible, even when the elements of G are straight line intervals. The following condition is found to be necessary and sufficient for the existence of such a transformation (see §3 for definitions of unfamiliar terms): For every positive number ε there exists a finite set K_1, K_2, \ldots, K_n of topological cylinders with bases on α and β such that (1) the solid cylinders determined by K_1, K_2, \ldots, K_n are mutually exclusive, (2) each arc of G is enclosed by some K_i, and (3) each K_i has horizontal diameter less than ε.

2. Examples. The decomposition given by Bing in [1] can be modified so that the collection of nondegenerate elements is of the type considered above. If there were a homeomorphism of E^3 onto itself carrying these arcs onto vertical intervals, then by [2, Theorem 5], the decomposition space would be homeomorphic to E^3; since this is not the case, there is no such homeomorphism.

A stronger example is furnished by Fort's modification [5] of Bing's example. This modification can be carried out in such a way

Presented to the Society, January 28, 1958; received by the editors January 15, 1959.
that there exist four horizontal planes α, β, γ, δ with α above β, β above γ, and γ above δ, such that each nondegenerate element of the decomposition is the sum of three intervals g_1, g_2, g_3 with end points on α and β, β and γ, and γ and δ, respectively. Let G denote the collection of all nondegenerate elements of this decomposition and let G_1, G_2 and G_3 denote, respectively, the collection of all intervals lying in an element of G and having end points on α and β, the collection of all such intervals having end points on β and γ, and the collection of all those with end points on γ and δ. Suppose there is a homeomorphism of E^3 onto itself which does not change the z-coordinate of any point and which takes each element of G_1 onto a vertical interval. Then there is a homeomorphism f_1 of E^3 onto itself which is fixed on β and on all points below β and which takes each element of G_1 onto a vertical interval. From the symmetry of the construction of G, it follows that there is also a homeomorphism f_3 of E^3 onto itself which is fixed on γ and all points above γ and which takes each element of G_3 onto a vertical interval. Then f_3f_1 is a homeomorphism of E^3 onto itself which is fixed on β, γ and all points between β and γ and which takes each element of G_3 onto a vertical interval. The proof of the main theorem below shows that there is a homeomorphism f_2 of E^3 onto itself which is fixed on γ and all points below γ, does not change the z-coordinate of any point, takes each element of G_2 onto a vertical interval, and is such that if p and q are two points above β and on the same vertical line, then $f_2(p)$ and $f_2(q)$ are on the same vertical line. The transformation $f_3f_2f_1$ is a homeomorphism of E^3 onto itself which takes each element of G onto a vertical interval. But this is impossible since it implies, as before, that the decomposition space is homeomorphic to E^3. Hence the elements of G_1 cannot be transformed into a collection of vertical intervals by a homeomorphism of E^3 onto itself which does not change the z-coordinate of any point.

It is perhaps worth noting that if G'_1 is the decomposition of E^3 whose only nondegenerate elements are the elements of G_1, then the decomposition space of G'_1 is homeomorphic to E^3. This is a consequence of the following theorem, which is essentially proved in [2].

If G is a monotone upper semicontinuous decomposition of E^3 such that (1) the set of nondegenerate elements of G is 0-dimensional in the decomposition space and (2) for every positive number ϵ and every open set U containing the sum of the nondegenerate elements of G, there is a homeomorphism of E^3 onto itself which is fixed on $E^3 - U$ and which takes each element of G into a set of diameter less than ϵ, then the decomposition space is homeomorphic to E^3.
3. Definitions. If G is a collection of sets, then G^* will denote the sum of the elements of G; the collection G is said to fill up a point set M if $G^* = M$.

A subset K of E^3 will be called a topological cylinder provided there exist two parallel planes α_0 and α_1 and a continuous collection G of mutually exclusive arcs filling up K such that (1) each element of G is irreducible from α_0 to α_1, (2) no element of G contains two points of any plane parallel to α_0, and (3) $\alpha_0 \cdot K$ and $\alpha_1 \cdot K$ are simple closed curves. The planar disks bounded by $\alpha_0 \cdot K$ and $\alpha_1 \cdot K$ will be called the bases of K and the collection G will be called a set of generators for K. A topological cylinder plus its bases will be called a closed topological cylinder and a closed topological cylinder plus its interior will be called a solid topological cylinder.

If K is a topological cylinder with bases on the planes α_0 and α_1, then K is said to enclose a point set M provided that (1) each point of M lies either between the planes α_0 and α_1 or else on one of those planes and (2) if α is a plane parallel to α_0 or α_1 and intersecting M, then the simple closed curve $\alpha \cdot K$ encloses $\alpha \cdot M$ (i.e., $\alpha \cdot M$ is a subset of the bounded component of $\alpha - \alpha \cdot K$).

If K is a topological cylinder with horizontal bases, then $\max(\text{dia}(\alpha \cdot K))$, α a horizontal plane, will be called the horizontal diameter of K.

4. Lemma 1. Suppose A is the annulus bounded by the unit circle C_1 and the circle C_2 with center O and radius 2, and G is a collection of mutually exclusive arcs filling up A such that each arc of G has one end point on C_1 and the other on C_2 and no arc of G contains two points of any circle with center O. Then there exists an isotopy $\{F_t\}$, $0 \leq t \leq 1$, such that (1) for each t, F_t is a homeomorphism of A onto itself which does not change the distance from O of any point, (2) F_0 is the identity on A and (3) F_t is a homeomorphism which takes each element of G into an interval lying on a line through O.

Proof. Let g_0 be an element of G. There is a continuous function $\phi(r)$, $1 \leq r \leq 2$, such that g_0 has the polar coordinate equation $\theta = \phi(r)$. For each t in $[0, 1/2]$ and each point (r, θ) of A, let $F_t^0(r, \theta) = (r, \theta - 2t \cdot \phi(r))$. Then $\{F_t^0\}$, $0 \leq t \leq 1/2$, is an isotopy on A and F_0^0 is the identity. If $(r, \theta) \in g_0$, then $F_{1/2}^0(r, \theta) = (r, 0)$, so $F_{1/2}^0$ takes g_0 onto the interval with end points $(1, 0)$ and $(2, 0)$.

Let $g_0' = F_{1/2}^1(g_0)$ and let G' denote the collection of all images under $F_{1/2}^1$ of elements of G. For each point p of A, let $\theta(p)$ be the smallest non-negative polar angle for p and let $\pi(p)$ denote the point of intersection of C_1 and the arc of G' containing p. For each t in $[1/2, 1]$
and each point \(p = (r, \theta) \) of \(A \), let \(F_t^2(p) = (r, 2(1-t) \cdot \theta(p) + (2t-1) \cdot \theta(\pi(p))) \).

Since \(\pi(p) \) is continuous on \(A \) and \(\theta(p) \) is continuous on \(A - g_0' \), \(F_t^2 \) is also continuous at each point of \(g_0' \), so it is continuous on all of \(A \). From the fact that if \(\theta(p_1) < \theta(p_2) \), then \(\theta(\pi(p_1)) < \theta(\pi(p_2)) \), it follows that \(F_t^2 \) is 1-1 and hence is a homeomorphism. It is easily verified that \(\{ F_t^2 \}, 1/2 \leq t \leq 1 \), is an isotopy. Clearly \(F_{1/2}^2 \) is the identity on \(A \), and since for each \(p \) in \(A \), \(\theta(\pi(p)) \) is a polar angle for \(F_t^2(p) \) and \(\pi(p) \) is constant on any element of \(G' \), \(F_t^2 \) takes each element of \(G' \) into an interval lying on a line through \(O \).

For each \(t \) in \([0, 1/2] \), let \(F_t = F_t^1 \) and for each \(t \) in \([1/2, 1] \), let \(F_t = F_t^2 F_{1/2}^1 \). Then \(\{ F_t \}, 0 \leq t \leq 1 \), is an isotopy satisfying the desired conditions.

Lemma 2. Suppose \(K_1 \) and \(K_2 \) are right circular cylinders with horizontal bases such that \(K_2 \) encloses \(K_1 \). For \(\ast = 1, 2 \), let \(G_\ast \) be a set of generators for \(K_\ast \) and let \(U_\ast \) denote the interior of the closed cylinder determined by \(K_\ast \). Then there exists a continuous collection \(G \) of mutually exclusive arcs filling up the closure of \(U_2 - U_1 \) such that no element of \(G \) contains two points of any horizontal plane and such that \(G_1 + G_2 \subseteq G \).

Proof. Suppose \(K_\ast, \ast = 1, 2 \), is represented in cylindrical coordinates by the equations \(r = \ast, 0 \leq z \leq 1 \). It follows from Lemma 1 that there is an isotopy \(\{ F_t^1 \}, 1 \leq t \leq 3/2 \), such that (1) for each \(t \) in \([1, 3/2] \), \(F_t^1 \) is a homeomorphism of \(K_1 \) onto itself which does not change the \(z \)-coordinate of any point, (2) \(F_{3/2}^1 \) is the identity on \(K_1 \) and (3) \(F_t^1 \) takes each element of \(G_1 \) onto a vertical interval. Similarly, there exists an isotopy \(\{ F_t^2 \}, 3/2 \leq t \leq 2 \), such that for each \(t \) in \([3/2, 2] \), \(F_t^2 \) is a homeomorphism of \(K_2 \) onto itself which does not change the \(z \)-coordinate of any point, (2) \(F_{3/2}^2 \) is the identity on \(K_2 \) and (3) \(F_t^2 \) takes each element of \(G_2' \) onto a vertical interval.

Let \(M = \text{Cl}(U_2 - U_1) \) and for each point \(p = (r, \theta, z) \) of \(M \), let \(F(p) \) be the point \((r, \theta', z) \), where \(\theta' \) is such that if \(r \leq 3/2 \), \(F_t^1(1, \theta, z) = (1, \theta', z) \) and if \(r \geq 3/2 \), \(F_t^2(2, \theta, z) = (2, \theta', z) \). Then \(F \) is a homeomorphism of \(M \) onto itself which does not change the \(z \)-coordinate of any point. Since \(F \) agrees with \(F_t^1 \) on \(K_1 \) and with \(F_t^2 \) on \(K_2 \), it takes each element of \(G_1 + G_2 \) onto a vertical interval.

Let \(G' \) denote the collection of all vertical intervals lying in \(M \) and having one end point on \(\alpha_0 \) and the other on \(\alpha_1 \) and let \(G \) denote the collection of all images under \(F^{-1} \) of elements of \(G' \). Then \(G \) is a collection of mutually exclusive arcs filling up \(M \) and satisfying the desired conditions.
Lemma 3. Suppose \(K_0, K_1, K_2, \ldots, K_n \) are topological cylinders with bases on the horizontal planes \(\alpha_0 \) and \(\alpha_1 \) such that \(K_0 \) encloses \(K_j \) (\(j=1, 2, \ldots, n \)) and such that no two of the solid cylinders determined by \(K_1, K_2, \ldots, K_n \) have a point in common. If for \(j=0, 1, 2, \ldots, n \), \(G_j \) is a set of generators for \(K_j \) and \(U_j \) is the interior of the closed cylinder determined by \(K_j \), then there is a continuous collection \(G \) of mutually exclusive arcs filling up the closure of

\[U_0 - (U_1 + U_2 + \cdots + U_n) \]

such that (1) no element of \(G \) contains two points of any horizontal plane and (2) each of \(G_0, G_1, \ldots, G_n \) is a subcollection of \(G \).

Proof. Let \(K'_0, \ldots, K'_n \) denote right circular cylinders with bases on \(\alpha_0 \) and \(\alpha_1 \) which are related in the same way as the correspondingly lettered topological cylinders \(K_0, \ldots, K_n \). Let \(U'_j, j=0, 1, \ldots, n \), denote the interior of \(K'_j \) and let \(M \) and \(M' \) denote, respectively, the closures of \(U_0 - (U_1 + \cdots + U_n) \) and \(U'_0 - (U'_1 + \cdots + U'_n) \). It follows from Theorem 1 and Lemma 2 of [4] and the remark following the proof of Theorem 5 of [3] that there is a homeomorphism \(h \) of \(M \) onto \(M' \) which does not change the \(z \)-coordinate of any point. For \(j=0, 1, \ldots, n \), let \(G'_j \) denote the collection of all images under \(h \) of elements of \(G_j \).

Let \(C_0 \) be a right circular cylinder with bases on \(\alpha_0 \) and \(\alpha_1 \) which is enclosed by \(K'_0 \) and encloses each of \(K'_1, \ldots, K'_n \). Let \(C_1, \ldots, C_n \) be right circular cylinders which determine mutually exclusive solid cylinders, such that \(C_j \) encloses \(K'_j \) and is enclosed by \(C_0 \). Let \(V_j \) denote the interior of \(C_j \), let \(M_0 = \text{Cl}(U'_0 - V_0) \) and for \(j=1, 2, \ldots, n \), let \(M_j = \text{Cl}(V_j - U'_j) \). It follows from Lemma 2 that, for \(j=0, 1, \ldots, n \), there exists a continuous collection \(H_j \) of mutually exclusive arcs filling up \(M_j \) such that no element of \(H_j \) contains two points of any horizontal plane, \(G'_j \subset H_j \), and every element of \(H_j \) which intersects \(C_j \) is a vertical interval. Let \(H = H_1 + H_2 + \cdots + H_n \) and let \(G' \) denote the collection obtained by adding to \(H \) all vertical intervals with end points on \(\alpha_0 \) and \(\alpha_1 \) which intersect \(M' \). Then the collection \(G \) of all images under \(h^{-1} \) of elements of \(G' \) satisfies the desired conditions.

Theorem. Suppose \(\alpha_0 \) and \(\alpha_1 \) are horizontal planes and \(G \) is a continuous collection of mutually exclusive arcs such that (1) each element of \(G \) is irreducible from \(\alpha_0 \) to \(\alpha_1 \) and no element of \(G \) contains two points of any horizontal plane, and (2) \(G^* \) is compact and intersects \(\alpha_0 \) in a totally disconnected set. In order that there should exist a homeomorphism of \(E^3 \) onto itself which takes each element of \(G \) onto a vertical interval and
does not change the \(z \)-coordinate of any point, it is necessary and sufficient that for every positive number \(\epsilon \), there exist a finite set \(K_1, K_2, \ldots, K_n \) of topological cylinders with bases on \(\alpha_0 \) and \(\alpha_1 \) such that (1) the solid cylinders determined by \(K_1, K_2, \ldots, K_n \) are mutually exclusive, (2) each arc of \(G \) is enclosed by some \(K_i \) and (3) each \(K_i \) has horizontal diameter less than \(\epsilon \).

Proof. 1. Suppose there is a homeomorphism \(h \) of \(E^3 \) onto itself which takes each element of \(G \) onto a vertical interval and does not change the \(z \)-coordinate of any point. Let \(G' \) denote the set of images under \(h \) of the elements of \(G \) and let \(K' \) be a vertical cylinder with bases on \(\alpha_0 \) and \(\alpha_1 \) which encloses \(G'^* \).

Suppose \(\epsilon \) is a positive number. Let \(S \) be a compact set containing the solid cylinder determined by \(K' \) in its interior. There is a positive number \(\delta \) such that if \(p \) and \(q \) are points of \(S \) and \(\rho(p, q) < \delta \), then \(\rho(h^{-1}(p), h^{-1}(q)) < \epsilon \). Since \(\alpha_0 \cdot G'^* \) is compact and totally disconnected, there exists a finite set \(D_1, D_2, \ldots, D_n \) of mutually exclusive disks in \(\alpha_0 \), each of diameter less than \(\epsilon \), such that every point of \(\alpha_0 \cdot G'^* \) is in the interior of some \(D_i \). Let \(K_i \), \(i = 1, 2, \ldots, n \), denote the topological cylinder having \(D_i \) as one of its bases and having its other base on \(\alpha_1 \), which has a collection of vertical intervals as a set of generators. If \(K_i = h^{-1}(K'_i) \), then \(K_1, K_2, \ldots, K_n \) satisfy the conditions of the theorem.

2. Suppose the condition is satisfied. Let \(K \) be a topological cylinder having a set of vertical generators, such that the bases of \(K \) are on \(\alpha_0 \) and \(\alpha_1 \) and \(K \) encloses \(G^* \). By hypothesis, there exists a sequence \(H_1, H_2, H_3, \ldots \) such that (1) for each \(n \), \(H_n \) is a finite collection of cylinders each having one base on \(\alpha_0 \) and the other on \(\alpha_1 \), such that no two of the solid cylinders determined by the elements of \(H_n \) have a point in common, (2) \(K \) encloses each element of \(H_i \) and for each \(n \), each element of \(H_{n+1} \) is enclosed by some element of \(H_n \), (3) for each \(n \), each arc of \(G \) is enclosed by some element of \(H_n \), and (4) for each \(n \), each element of \(H_n \) has horizontal diameter less than \(1/n \).

Let \(U \) denote the interior of the closed cylinder determined by \(K \) and for each \(n \), let \(U_n \) denote the sum of the interiors of the closed cylinders determined by the elements of \(H_n \).

Let \(G_0 \) be the set of vertical generators for \(K \). It follows from Lemma 3 that there exists a continuous collection \(G_1 \) of mutually exclusive arcs filling up the closure of \(U - U_i \), such that (1) each element of \(G_1 \) is irreducible from \(\alpha_0 \) to \(\alpha_1 \) and no element of \(G_1 \) contains two points of any horizontal plane and (2) \(G_0 \subseteq G_1 \) and each arc of \(G_1 \) which intersects an element of \(H_i \) is a subset of that element. By
applying Lemma 3 to each element of H_1, it can be shown that there is a continuous collection G_2 of mutually exclusive arcs filling up the closure of $U - U_2$, satisfying the first condition imposed on G_1 above and such that $G_1 \subseteq G_2$ and each arc of G_2 which intersects an element of H_2 is a subset of that element. By continuing this process, there may be obtained a sequence G_1, G_2, G_3, \ldots such that (1) for each n, G_n is a continuous collection of mutually exclusive arcs filling up the closure of $U - U_n$ such that each element of G_n is irreducible from α_0 to α_1 and no element of G_n contains two points of any horizontal plane, and (2) for each n, $G_n \subseteq G_{n+1}$. Let $G' = G + G_1 + G_2 + \ldots$. Then G' is a continuous collection of mutually exclusive arcs filling up the solid cylinder determined by K, each element of G' is irreducible from α_0 to α_1, no element of G' contains two points of any horizontal plane, and each element of G' which intersects K is a vertical interval.

Let M denote the solid cylinder determined by K. For each point p of M, let $f(p)$ be that point q on the horizontal plane containing p such that the projection of q onto α_0 is an end point of the arc of G' containing p. Then f is a homeomorphism of M onto itself which is fixed on K and on $M \cdot \alpha_0$, does not change the z-coordinate of any point, and takes each element of G' onto a vertical interval. Let F be the function which agrees with f on M, leaves fixed each point of $E^3 - M$ not lying directly above a point of M, and is such that if p is a point of $E^3 - M$ lying directly above the point q of $\alpha_1 \cdot M$ (supposing α_1 is above α_0), then $F(p)$ is the point with the same z-coordinate as p which lies directly above the point $f(q)$. Then F is a homeomorphism of E^3 onto itself which satisfies all the desired conditions.

References

1. R. H. Bing, *A decomposition of E^3 into points and tame arcs such that the decomposition space is topologically different from E^3*, Ann. of Math. vol. 65 (1957) pp. 484-499.

University of Virginia

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use