CERTAIN COLLECTIONS OF ARCS IN E^3

B. J. BALL

1. Introduction. In considering upper semicontinuous decompositions of E^3, it is sometimes useful to know whether a given collection of continua can be transformed, by a homeomorphism of E^3 onto itself, into another collection which is simpler in some respects; for example, a collection of straight line intervals might be transformed into a collection of vertical intervals, or a collection of arcs into a collection of straight line intervals. It might also be useful to know conditions under which such a transformation can be effected by means of a particular type of homeomorphism of E^3 onto itself.

In this paper, the following questions of this type will be considered. Suppose α and β are horizontal planes and G is a continuous collection of mutually exclusive arcs, each of which is irreducible from α to β and no one of which contains two points of any horizontal plane, such that the sum of the elements of G is compact and intersects α in a totally disconnected set. Under what conditions is there a homeomorphism of E^3 onto itself which takes each element of G onto a vertical interval and does not change the z-coordinate of any point?

It is shown, with the aid of certain results due to Bing [1] and Fort [5], that such a transformation is not always possible, even when the elements of G are straight line intervals. The following condition is found to be necessary and sufficient for the existence of such a transformation (see §3 for definitions of unfamiliar terms): For every positive number ϵ there exists a finite set K_1, K_2, \ldots, K_n of topological cylinders with bases on α and β such that (1) the solid cylinders determined by K_1, K_2, \ldots, K_n are mutually exclusive, (2) each arc of G is enclosed by some K_i and (3) each K_i has horizontal diameter less than ϵ.

2. Examples. The decomposition given by Bing in [1] can be modified so that the collection of nondegenerate elements is of the type considered above. If there were a homeomorphism of E^3 onto itself carrying these arcs onto vertical intervals, then by [2, Theorem 5], the decomposition space would be homeomorphic to E^3; since this is not the case, there is no such homeomorphism.

A stronger example is furnished by Fort's modification [5] of Bing's example. This modification can be carried out in such a way

Presented to the Society, January 28, 1958; received by the editors January 15, 1959.
that there exist four horizontal planes α, β, γ, δ with α above β, β above γ, and γ above δ, such that each nondegenerate element of the decomposition is the sum of three intervals g_1, g_2, g_3 with end points on α and β, β and γ, and γ and δ, respectively. Let G denote the collection of all nondegenerate elements of this decomposition and let G_1, G_2 and G_3 denote, respectively, the collection of all intervals lying in an element of G and having end points on α and β, the collection of all such intervals having end points on β and γ, and the collection of all those with end points on γ and δ. Suppose there is a homeomorphism of E^3 onto itself which does not change the z-coordinate of any point and which takes each element of G_1 onto a vertical interval. Then there is a homeomorphism f_1 of E^3 onto itself which is fixed on β and on all points below β and which takes each element of G_1 onto a vertical interval. From the symmetry of the construction of G, it follows that there is also a homeomorphism f_2 of E^3 onto itself which is fixed on γ and all points above γ and which takes each element of G_3 onto a vertical interval. Then f_2f_1 is a homeomorphism of E^3 onto itself which is fixed on β, γ and all points between β and γ and which takes each element of $G_1 + G_3$ onto a vertical interval. The proof of the main theorem below shows that there is a homeomorphism f_2 of E^3 onto itself which is fixed on γ and all points below γ, does not change the z-coordinate of any point, takes each element of G_2 onto a vertical interval, and is such that if p and q are two points above β and on the same vertical line, then $f_2(p)$ and $f_2(q)$ are on the same vertical line. The transformation f_2f_1 is a homeomorphism of E^3 onto itself which takes each element of G onto a vertical interval. But this is impossible since it implies, as before, that the decomposition space is homeomorphic to E^3. Hence the elements of G_1 cannot be transformed into a collection of vertical intervals by a homeomorphism of E^3 onto itself which does not change the z-coordinate of any point.

It is perhaps worth noting that if G_1' is the decomposition of E^3 whose only nondegenerate elements are the elements of G_1, then the decomposition space of G_1' is homeomorphic to E^3. This is a consequence of the following theorem, which is essentially proved in [2].

If G is a monotone upper semicontinuous decomposition of E^3 such that (1) the set of nondegenerate elements of G is 0-dimensional in the decomposition space and (2) for every positive number ϵ and every open set U containing the sum of the nondegenerate elements of G, there is a homeomorphism of E^3 onto itself which is fixed on $E^3 - U$ and which takes each element of G into a set of diameter less than ϵ, then the decomposition space is homeomorphic to E^3.
3. Definitions. If \(G \) is a collection of sets, then \(G^\ast \) will denote the sum of the elements of \(G \); the collection \(G \) is said to fill up a point set \(M \) if \(G^\ast = M \).

A subset \(K \) of \(E^3 \) will be called a topological cylinder provided there exist two parallel planes \(\alpha_0 \) and \(\alpha_1 \) and a continuous collection \(G \) of mutually exclusive arcs filling up \(K \) such that (1) each element of \(G \) is irreducible from \(\alpha_0 \) to \(\alpha_1 \), (2) no element of \(G \) contains two points of any plane parallel to \(\alpha_0 \), and (3) \(\alpha_0 \cdot K \) and \(\alpha_1 \cdot K \) are simple closed curves. The planar disks bounded by \(\alpha_0 \cdot K \) and \(\alpha_1 \cdot K \) will be called the bases of \(K \) and the collection \(G \) will be called a set of generators for \(K \). A topological cylinder plus its bases will be called a closed topological cylinder and a closed topological cylinder plus its interior will be called a solid topological cylinder.

If \(A \) is a topological cylinder with bases on the planes \(\alpha_0 \) and \(\alpha_1 \), then \(K \) is said to enclose a point set \(M \) provided that (1) each point of \(M \) lies either between the planes \(\alpha_0 \) and \(\alpha_1 \) or else on one of those planes and (2) if \(\alpha \) is a plane parallel to \(\alpha_0 \) or \(\alpha_1 \) and intersecting \(M \), then the simple closed curve \(\alpha \cdot K \) encloses \(\alpha \cdot M \) (i.e., \(\alpha \cdot M \) is a subset of the bounded component of \(\alpha - \alpha \cdot K \)).

If \(K \) is a topological cylinder with horizontal bases, then \(\max(\text{dia}(\alpha \cdot K)) \), \(\alpha \) a horizontal plane, will be called the horizontal diameter of \(K \).

4. Lemma 1. Suppose \(A \) is the annulus bounded by the unit circle \(C_1 \) and the circle \(C_2 \) with center \(O \) and radius \(2 \), and \(G \) is a collection of mutually exclusive arcs filling up \(A \) such that each arc of \(G \) has one end point on \(C_1 \) and the other on \(C_2 \) and no arc of \(G \) contains two points of any circle with center \(O \). Then there exists an isotopy \(\{ F_t \} \), \(0 \leq t \leq 1 \), such that (1) for each \(t \), \(F_t \) is a homeomorphism of \(A \) onto itself which does not change the distance from \(O \) of any point, (2) \(F_0 \) is the identity on \(A \) and (3) \(F_t \) is a homeomorphism which takes each element of \(G \) into an interval lying on a line through \(O \).

Proof. Let \(g_0 \) be an element of \(G \). There is a continuous function \(\phi(r) \), \(1 \leq r \leq 2 \), such that \(g_0 \) has the polar coordinate equation \(\theta = \phi(r) \). For each \(t \) in \([0, 1/2]\) and each point \((r, \theta)\) of \(A \), let \(F^1_t(r, \theta) = (r, \theta - 2t \cdot \phi(r)) \). Then \(\{ F^1_t \} \), \(0 \leq t \leq 1/2 \), is an isotopy on \(A \) and \(F^1_0 \) is the identity. If \((r, \theta) \in g_0 \), then \(F^1_{1/2}(r, \theta) = (r, 0) \), so \(F^1_{1/2} \) takes \(g_0 \) onto the interval with end points \((1, 0)\) and \((2, 0)\).

Let \(g'_0 = F^1_{1/2}(g_0) \) and let \(G' \) denote the collection of all images under \(F^1_{1/2} \) of elements of \(G \). For each point \(p \) of \(A \), let \(\theta(p) \) be the smallest non-negative polar angle for \(p \) and let \(\pi(p) \) denote the point of intersection of \(C_1 \) and the arc of \(G' \) containing \(p \). For each \(t \) in \([1/2, 1]\)
and each point \(p = (r, \theta) \) of \(A \), let \(F_t^2(p) = (r, 2(1-t)\cdot \theta(p) + (2t-1)\cdot \theta(\pi(p))) \).

Since \(\pi(p) \) is continuous on \(A \) and \(\theta(p) \) is continuous on \(A - g'_0 \), \(F_t^2 \) is continuous on \(A - g'_0 \). By a direct argument, it can be shown that \(F_t^2 \) is also continuous at each point of \(g'_0 \), so it is continuous on all of \(A \). From the fact that if \(\theta(p_1) < \theta(p_2) \), then \(\theta(\pi(p_1)) < \theta(\pi(p_2)) \), it follows that \(F_t^2 \) is 1-1 and hence is a homeomorphism. It is easily verified that \(\{F_t^2\}, 1/2 \leq t \leq 1 \), is an isotopy. Clearly \(F_{1/2}^2 \) is the identity on \(A \), and since for each \(p \) in \(A \), \(\theta(\pi(p)) \) is a polar angle for \(F_t^2(p) \) and \(\pi(p) \) is constant on any element of \(G' \), \(F_t^2 \) takes each element of \(G' \) into an interval lying on a line through \(O \).

For each \(t \) in \([0, 1/2]\), let \(F_t = F_t^1 \) and for each \(t \) in \([1/2, 1]\), let \(F_t = F_t^2F_{1/2}^1 \). Then \(\{F_t\}, 0 \leq t \leq 1 \), is an isotopy satisfying the desired conditions.

Lemma 2. Suppose \(K_1 \) and \(K_2 \) are right circular cylinders with horizontal bases such that \(K_2 \) encloses \(K_1 \). For \(* = 1, 2 \), let \(G_* \) be a set of generators for \(K_* \) and let \(U_* \) denote the interior of the closed cylinder determined by \(K_* \). Then there exists a continuous collection \(G \) of mutually exclusive arcs filling up the closure of \(U_2 - U_1 \) such that no element of \(G \) contains two points of any horizontal plane and such that \(G_1 + G_2 \subseteq G \).

Proof. Suppose \(K_i, i = 1, 2 \), is represented in cylindrical coordinates by the equations \(r = i, 0 \leq z \leq 1 \). It follows from Lemma 1 that there is an isotopy \(\{F_t^2\}, 1 \leq t \leq 3/2 \), such that (1) for each \(t \) in \([1, 3/2]\), \(F_t^1 \) is a homeomorphism of \(K_1 \) onto itself which does not change the \(z \)-coordinate of any point, (2) \(F_{3/2} \) is the identity on \(K_1 \) and (3) \(F_t^1 \) takes each element of \(G_1 \) onto a vertical interval. Similarly, there exists an isotopy \(\{F_t^2\}, 3/2 \leq t \leq 2 \), such that for each \(t \) in \([3/2, 2]\), \(F_t^2 \) is a homeomorphism of \(K_2 \) onto itself which does not change the \(z \)-coordinate of any point, (2) \(F_{3/2}^2 \) is the identity on \(K_2 \) and (3) \(F_t^2 \) takes each element of \(G_2 \) onto a vertical interval.

Let \(M = \text{Cl}(U_2 - U_1) \) and for each point \(p = (r, \theta, z) \) of \(M \), let \(F(p) \) be the point \((r, \theta', z) \), where \(\theta' \) is such that if \(r \leq 3/2 \), \(F_t^1(1, \theta, z) = (1, \theta', z) \) and if \(r \geq 3/2 \), \(F_t^2(2, \theta, z) = (2, \theta', z) \). Then \(F \) is a homeomorphism of \(M \) onto itself which does not change the \(z \)-coordinate of any point. Since \(F \) agrees with \(F_t^1 \) on \(K_1 \) and with \(F_t^2 \) on \(K_2 \), it takes each element of \(G_1 + G_2 \) onto a vertical interval.

Let \(G' \) denote the collection of all vertical intervals lying in \(M \) and having one end point on \(\alpha_0 \) and the other on \(\alpha_1 \) and let \(G \) denote the collection of all images under \(F^{-1} \) of elements of \(G' \). Then \(G \) is a collection of mutually exclusive arcs filling up \(M \) and satisfying the desired conditions.
Lemma 3. Suppose $K_0, K_1, K_2, \ldots, K_n$ are topological cylinders with bases on the horizontal planes α_0 and α_1 such that K_0 encloses K_j ($j=1, 2, \ldots, n$) and such that no two of the solid cylinders determined by K_1, K_2, \ldots, K_n have a point in common. If for $j=0, 1, 2, \ldots, n$, G_j is a set of generators for K_j and U_j is the interior of the closed cylinder determined by K_j, then there is a continuous collection G of mutually exclusive arcs filling up the closure of $U_0 - (U_1 + U_2 + \cdots + U_n)$ such that (1) no element of G contains two points of any horizontal plane and (2) each of G_0, G_1, \ldots, G_n is a subcollection of G.

Proof. Let K'_0, \ldots, K'_n denote right circular cylinders with bases on α_0 and α_1 which are related in the same way as the correspondingly lettered topological cylinders K_0, \ldots, K_n. Let U'_j, $j=0, 1, \ldots, n$, denote the interior of K'_j and let M and M' denote, respectively, the closures of $U_0 - (U_1 + \cdots + U_n)$ and $U'_0 - (U'_1 + \cdots + U'_n)$. It follows from Theorem 1 and Lemma 2 of [4] and the remark following the proof of Theorem 5 of [3] that there is a homeomorphism h of M onto M' which does not change the z-coordinate of any point. For $j=0, 1, \ldots, n$, let G'_j denote the collection of all images under h of elements of G_j.

Let C_0 be a right circular cylinder with bases on α_0 and α_1 which is enclosed by K'_0 and encloses each of K'_1, \ldots, K'_n. Let C_1, \ldots, C_n be right circular cylinders which determine mutually exclusive solid cylinders, such that C_j encloses K'_j and is enclosed by C_0. Let V_j denote the interior of C_j, let $M_0 = \text{Cl}(U'_0 - V_0)$ and for $j=1, 2, \ldots, n$, let $M_j = \text{Cl}(V_j - U'_j)$. It follows from Lemma 2 that, for $j=0, 1, \ldots, n$, there exists a continuous collection H_j of mutually exclusive arcs filling up M_j such that no element of H_j contains two points of any horizontal plane, $G'_j \subset H_j$, and every element of H_j which intersects C_j is a vertical interval. Let $H = H_1 + H_2 + \cdots + H_n$ and let G' denote the collection obtained by adding to H all vertical intervals with end points on α_0 and α_1 which intersect M'. Then the collection G of all images under h^{-1} of elements of G' satisfies the desired conditions.

Theorem. Suppose α_0 and α_1 are horizontal planes and G is a continuous collection of mutually exclusive arcs such that (1) each element of G is irreducible from α_0 to α_1 and no element of G contains two points of any horizontal plane, and (2) G^* is compact and intersects α_0 in a totally disconnected set. In order that there should exist a homeomorphism of E^3 onto itself which takes each element of G onto a vertical interval and
does not change the \(z \)-coordinate of any point, it is necessary and sufficient that for every positive number \(\epsilon \), there exist a finite set \(K_1, K_2, \ldots, K_n \) of topological cylinders with bases on \(\alpha_0 \) and \(\alpha_1 \) such that (1) the solid cylinders determined by \(K_1, K_2, \ldots, K_n \) are mutually exclusive, (2) each arc of \(G \) is enclosed by some \(K_i \) and (3) each \(K_i \) has horizontal diameter less than \(\epsilon \).

PROOF. 1. Suppose there is a homeomorphism \(h \) of \(E^3 \) onto itself which takes each element of \(G \) onto a vertical interval and does not change the \(z \)-coordinate of any point. Let \(G' \) denote the set of images under \(h \) of the elements of \(G \) and let \(K' \) be a vertical cylinder with bases on \(\alpha_0 \) and \(\alpha_1 \) which encloses \(G'^* \).

Suppose \(\epsilon \) is a positive number. Let \(S \) be a compact set containing the solid cylinder determined by \(K' \) in its interior. There is a positive number \(\delta \) such that if \(p \) and \(q \) are points of \(S \) and \(\rho(p, q) < \delta \), then \(\rho(h^{-1}(p), h^{-1}(q)) < \epsilon \). Since \(\alpha_0 \cdot G'^* \) is compact and totally disconnected, there exists a finite set \(D_1, D_2, \ldots, D_n \) of mutually exclusive disks in \(\alpha_0 \), each of diameter less than \(\epsilon \), such that every point of \(\alpha_0 \cdot G'^* \) is in the interior of some \(D_i \). Let \(K'_i, i = 1, 2, \ldots, n \), denote the topological cylinder having \(D_i \) as one of its bases and having its other base on \(\alpha_1 \), which has a collection of vertical intervals as a set of generators. If \(K_i = h^{-1}(K'_i) \), then \(K_1, K_2, \ldots, K_n \) satisfy the conditions of the theorem.

2. Suppose the condition is satisfied. Let \(K \) be a topological cylinder having a set of vertical generators, such that the bases of \(K \) are on \(\alpha_0 \) and \(\alpha_1 \) and \(K \) encloses \(G^* \). By hypothesis, there exists a sequence \(H_1, H_2, H_3, \ldots \) such that (1) for each \(n \), \(H_n \) is a finite collection of cylinders each having one base on \(\alpha_0 \) and the other on \(\alpha_1 \), such that no two of the solid cylinders determined by the elements of \(H_n \) have a point in common, (2) \(K \) encloses each element of \(H_i \) and for each \(n \), each element of \(H_n+1 \) is enclosed by some element of \(H_n \), (3) for each \(n \), each arc of \(G \) is enclosed by some element of \(H_n \), and (4) for each \(n \), each element of \(H_n \) has horizontal diameter less than \(1/n \).

Let \(U \) denote the interior of the closed cylinder determined by \(K \) and for each \(n \), let \(U_n \) denote the sum of the interiors of the closed cylinders determined by the elements of \(H_n \).

Let \(G_0 \) be the set of vertical generators for \(K \). It follows from Lemma 3 that there exists a continuous collection \(G_1 \) of mutually exclusive arcs filling up the closure of \(U - U_i \) such that (1) each element of \(G_1 \) is irreducible from \(\alpha_0 \) to \(\alpha_1 \) and no element of \(G_1 \) contains two points of any horizontal plane and (2) \(G_0 \subset G_1 \) and each arc of \(G_1 \) which intersects an element of \(H_i \) is a subset of that element. By
applying Lemma 3 to each element of H_1, it can be shown that there is a continuous collection G_2 of mutually exclusive arcs filling up the closure of $U - U_2$, satisfying the first condition imposed on G_1 above and such that $G_1 \subset G_2$ and each arc of G_2 which intersects an element of H_2 is a subset of that element. By continuing this process, there may be obtained a sequence G_1, G_2, G_3, \ldots such that (1) for each n, G_n is a continuous collection of mutually exclusive arcs filling up the closure of $U - U_n$ such that each element of G_n is irreducible from α_0 to α_1 and no element of G_n contains two points of any horizontal plane, and (2) for each n, $G_n \subset G_{n+1}$. Let $G' = G + G_1 + G_2 + \cdots$. Then G' is a continuous collection of mutually exclusive arcs filling up the solid cylinder determined by K, each element of G' is irreducible from α_0 to α_1, no element of G' contains two points of any horizontal plane, and each element of G' which intersects K is a vertical interval.

Let M denote the solid cylinder determined by K. For each point p of M, let $f(p)$ be that point q on the horizontal plane containing p such that the projection of q onto α_0 is an end point of the arc of G' containing p. Then f is a homeomorphism of M onto itself which is fixed on K and on $M \cdot \alpha_0$, does not change the z-coordinate of any point, and takes each element of G' onto a vertical interval. Let F be the function which agrees with f on M, leaves fixed each point of $E^3 - M$ not lying directly above a point of M, and is such that if p is a point of $E^3 - M$ lying directly above the point q of $\alpha_1 \cdot M$ (supposing α_1 is above α_0), then $F(p)$ is the point with the same z-coordinate as p which lies directly above the point $f(q)$. Then F is a homeomorphism of E^3 onto itself which satisfies all the desired conditions.

References

1. R. H. Bing, A decomposition of E^3 into points and tame arcs such that the decomposition space is topologically different from E^3, Ann. of Math. vol. 65 (1957) pp. 484–499.

University of Virginia