1. **Introduction.** Recently, Lee extended the definition of covering space to spaces which are not necessarily locally connected [2]. He showed that many of the classical results [1, Chapters II, VI-X] on covering spaces and simple connectedness can be extended to this wider class of spaces. In this paper, using a modification of Lee's definition, we consider the structure of the set $C(X)$ of "all" covering spaces of a space X. We put an order on $C(X)$ and consider conditions under which $C(X)$ has a last element, a universal covering space. We shall make a distinction between simply connected covering space and universal covering space. Although simply connected covering spaces are universal, the converse is an open question. We also show that a universal covering space, if it exists, is unique. The last section gives examples.

We call the pair (X, f) a *covering space* of X_0 if

1. X is connected and f is a continuous map of X onto X_0.
2. For every $x \in X_0$ there exists an open connected neighborhood U of x such that $f^{-1}(U)$ is the union of disjoint open sets U^* with the property that $f|U^*$ is a homeomorphism onto U. Equivalence of two covering spaces is defined in the usual way [1, p. 43]. As in [2], we say that U is *evenly covered* by f and the sets U^* are the even portions of $f^{-1}(U)$. Note that evenly covered sets are assumed connected. Our definition of covering space is more restrictive than that of [2] but more general than that of [1, p. 40]. The space X is *simply connected* if every covering space (Y, g) of X is equivalent to the trivial covering space (X, i), i the identity map on X.

Let $C(X_0)$ be the set of "all covering spaces" of X_0. Such a set exists in the sense of [1, p. 44]. If (X, f) is a covering space of X_0 and $g: Y \to X_0$ is continuous, we shall say that g can be *lifted* with respect to f if there exists a continuous mapping $\tilde{g}: Y \to X$ such that $f \circ \tilde{g} = g$. The mapping \tilde{g} is called the *lifting* of g.

Cancellation Lemma 1.1. Let (X, f) be a covering space of X_0. If g and h are continuous functions from a connected space Y into X such that $g(y) = h(y)$ for some point y in Y and $f \circ g = f \circ h$ then $g = h$.

The proof is as in [1, p. 51].
2. Uniformly covered spaces. We call the connected open subset U of X_0 uniformly evenly covered if for every element (X, f) of $C(X_0)$, U is evenly covered by f. The space X_0 is a uniformly covered space if every point of X_0 lies in a uniformly evenly covered open set. Note that spaces satisfying the first half of the conclusion of Lemma 4.1 of [2] are uniformly covered.

Lemma 2.1. If X_0 is a uniformly covered space and if the diagram

$$
\begin{array}{ccc}
X_1 & \xrightarrow{g} & X_2 \\
\downarrow f_1 & & \downarrow f_2 \\
X_0 & & \\
\end{array}
$$

is commutative where f_1 and f_2 are covering maps and g is continuous, then g is also a covering map.

Proof. The assumption of uniform even covering is unnecessary if X_0 is locally connected; we only use the fact that f_1 and f_2 evenly cover the same connected neighborhoods.

If the open set U is evenly covered by f_1 and f_2, let U_1 be a component of $f_1^{-1}(U)$, and let U_2 be the component of $f_2^{-1}(U)$ that contains $g(U_1)$. Then $g: U_1 \rightarrow U_2$ equals $(f_2|_{U_2})^{-1} \circ f_1$, and is a homeomorphism. It follows easily that $g(X_1)$ is open, and that g is a covering of $g(X_1)$. Moreover, $g(X_1)$ is closed; Let $x_2 \in X_2$, let U be as before with $f_2(x_2) \in U$, and let U_2 be the component of $f_2^{-1}(U)$ containing x_2. Suppose U_2 meets $g(X_1)$. The first part of the proof shows that there is a component U_1 of $f_1^{-1}(U)$ with $g(U_1) = U_2$; and so $x_2 \in g(X_1)$ and $g(X_1)$ is closed.

This completes our proof.

If (X_1, f_1) and (X_2, f_2) are two members of $C(X_0)$ we shall say that $(X_1, f_1) \succeq (X_2, f_2)$ if f_1 can be lifted with respect to f_2 and the lifting \tilde{f}_1 is a covering map. The relation \succeq is not transitive in general, as an example in §3 shows, but it is if X_0 is uniformly covered. This follows from Lemma 2.1.

It is possible that the set $C(X_0)$ has a largest element relative to the relation \succeq. That is, there exists (X, f) in $C(X_0)$ such that $(X, f) \succeq (X_1, f_1)$ for every element (X_1, f_1) of $C(X_0)$. We call (X, f) a universal covering space of X_0.

The following theorem is in close analogy to [2, Theorem 5.1]. However, while a simply connected covering space is universal, the converse is an open question.

Theorem 2.2. X_0 has a universal covering space if and only if X_0 is a uniformly covered space. Moreover, if X_0 is a uniformly covered
space, and if x_0 is a point of X_0 then there exists a universal covering space (X, f) and a point $x \in X$ with the following property: if (X_1, f_1) is any covering space of X_0 with x_1 any point of $f_1^{-1}(x_0)$, then there exists a lifting \tilde{f} of f with respect to f_2 such that $\tilde{f}(x) = x_1$.

Proof. We show first that if X_0 has a universal covering space (X, f) and U is a neighborhood of X_0 evenly covered by f, then U is evenly covered by f_1 where (X_1, f_1) is any member of $C(X_0)$. Since (X, f) is universal, there exists a lifting \tilde{f} of f with respect to f_1, $f_1 \circ \tilde{f} = f$, and \tilde{f} is a covering map. If U_α is an even portion of $f^{-1}(U)$ then $\tilde{f}(U_\alpha)$ is open in X_1 because \tilde{f} is an open map. Also, $f_1^{-1}(U) = \bigcup \tilde{f}(U_\alpha)$ where U_α ranges over all even portions of $f^{-1}(U)$, and $f_1 \mid \tilde{f}(U_\alpha)$ is a homeomorphism. We must show that the sets of the form $\tilde{f}(U_\alpha)$, where U_α is an even portion of $f^{-1}(U)$, are either disjoint or coincide. Suppose that for $y_\alpha \in U_\alpha$ and $y_\beta \in U_\beta$, $\tilde{f}(y_\alpha) = \tilde{f}(y_\beta)$. Consider the homeomorphisms $f_\alpha = f \mid U_\alpha, f_\beta = f \mid U_\beta$, and the mappings $\tilde{f}_\alpha = \tilde{f} \mid U_\alpha$ and $\tilde{f}_\beta = \tilde{f} \mid U_\beta$. Both \tilde{f}_α and $f_\beta \circ f_\alpha^{-1} \circ f_\alpha$ agree on y_α and $f_1 \circ \tilde{f}_\alpha = f_1 \circ \tilde{f}_\beta \circ f_\alpha^{-1}$ $\circ f_\alpha$. By the Cancellation Lemma, $\tilde{f}_\alpha = \tilde{f}_\beta \circ f_\alpha^{-1} \circ f_\alpha$, hence $\tilde{f}(U_\alpha) = \tilde{f}(U_\beta)$. This completes the “only if” part of the proof.

The “if” part of the proof will follow from the stronger statement beginning with “moreover.” This, however, is proved by the construction of Chevalley [1, p. 55] with one minor variation. Where he refines the topology of the constructed space until it is locally connected, we only refine it enough to make the connected disjoint even portions open. In all other respects the proof remains the same. This construction really rests on uniform even covering.

Corollary 2.3. A universal covering space is unique up to equivalence.

Proof. Select a point x_0 of X_0 and let (X, f) be the universal covering space of Theorem 2.2, with x in X such that $f(x) = x_0$. Let (Y, g) be another universal covering space of X_0 and \bar{g} is the lifting of g with respect to f, $f \circ g = g$. Select a point y in $\bar{g}^{-1}(x)$. By Theorem 2.2 there is a lifting \bar{f} of f with respect to g, such that $\bar{f}(x) = y$. The identity i on the connected space Y and $\bar{f} \circ \bar{g}$ agree on y and $g \circ i = g \circ \bar{f} \circ \bar{g}$. By the Cancellation Lemma, $\bar{f} \circ \bar{g} = i$, and (X, f) and (Y, g) are equivalent.

We now consider a case when the universal covering space is simply connected.

Theorem 2.4. If X_0 is a uniformly covered space and (X, f) is its universal covering space, then X is simply connected if and only if for every covering space (X_1, f_1) of X, $(X_1, f \circ f_1)$ is a covering space of X_0.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Proof. In the case that X is simply connected, if (X_1, f_1) is a covering space of X then f_1 is a homeomorphism: therefore $(X_1, f \circ f_1)$ is a covering space of X_0.

Conversely, assume that (X_1, f_1) is a covering space of X and that $f \circ f_1$ covers X_0. Choose a point x_0 in X_0 and let x be the point of X satisfying the "moreover" part of Theorem 2.2. Choose x_1 in $f^{-1}(x)$. By Theorem 2.2 there exists a lifting \tilde{f} of f with respect to $f \circ f_1$ such that $f(x) = x_1$. By the Cancellation Lemma, $f_1 \circ \tilde{f} = \text{id}$ on X and f_1 is a homeomorphism. Hence, X is simply connected.

Although "\supseteq" is not necessarily transitive if X is not uniformly covered, $C(X)$ is directed relative to "\supseteq". That is, given two covering spaces (Z, h) and (Y, g) of X_0 there is a covering space (W, k) such that $(W, k) \supseteq (Z, h)$ and $(W, k) \supseteq (Y, g)$. It is not hard to see that W can be taken to be a component of W' where W' is the subset of $Y \times Z$ consisting of the points (y, z) such that $g(y) = h(z)$.

This is the construction which Novosad [3] needed to show that his set of g-covering spaces is directed. His proof of directedness is misleading in that he shows that every two elements have a (trivial) lower bound while an upper bound is what is needed.

3. Examples. In this section we consider some examples and miscellaneous results. We first deal with simply ordered sets. Let X_0 be a simply ordered set topologized with the order topology and connected in that topology. Note that X_0 is also locally connected so that we may use Chevalley's definition of covering space here. Say X_0 is closed if it has a maximum and a minimum. If X_0 is closed and connected then any covering by open intervals contains a finite chain of overlapping intervals joining the maximum and the minimum; hence X_0 is compact.

Theorem 3.1. A simply ordered set connected in the order topology is simply connected.

Proof. Let X_0 be such a set. First assume that X_0 is closed, hence compact. Let (X, f) be a covering space of X_0. There is a finite collection of evenly covered open intervals $I_j = (a_j, b_j), j = 1, \ldots, n$, such that $X_0 = \bigcup_1^n I_j$. We may assume that $a_j < b_{j-1} < a_{j+1}$. By [1, Lemma 1, p. 57] X_0 is simply connected.

Now consider the general case and let (X, f) be as above. Let x_0 be a fixed point of X_0 and x any other point. There is a closed, hence simply connected, interval containing x_0 and x in its interior. This interval is then evenly covered by f, and contains an open interval I_x also evenly covered by f containing x and x_0. Choose $p_0 \in f^{-1}(x_0)$
and let K_x be the even portion of $f^{-1}(I_x)$ containing p_0. $K = \bigcup_{x \in X} K_x$ is open and it is sufficient to show that $f|K$ is one to one. Suppose that $p_1 \in K_x$, $p_2 \in K_x$ and $f(p_1) = f(p_2)$. Since $I_x \cap I_z$ is not empty, $I = I_x \cup I_z$ is evenly covered. The even portion of $f^{-1}(I)$ containing p_0 contains both p_1 and p_2; hence $p_1 = p_2$.

Theorem 3.1 implies that the real line and intervals in it are simply connected, a matter discussed by Chevalley [1, p. 56]. However, his argument is based on the assumption that covering spaces of the additive group of real numbers are actually covering groups. This assumption is never proved.

Theorem 3.1 also provides a source of examples of simply connected spaces which are not arcwise connected. For instance, consider a connected simply ordered set with arbitrarily small neighborhoods that are of a power higher than that of the continuum.

The following is an example of a space with no universal covering space (hence no simply connected covering space either). Let X_0 in the plane consist of a large circle C_0 with center c_0 together with smaller circles C_i, $i = 1, 2, \cdots$, outside of C_0, tangent to C_0, but not tangent to each other. Let the centers c_i of the C_i approach a limit point p on C_0. The space X_0 is connected, and locally connected. For each i there is a subspace X_i of the Riemann surface R_i of $\log(z - c_i)$ such that (X_i, f_i) is a covering space of X_0 where f_i is the restriction to X_i of the projection from R_i to the plane. One sees easily that no neighborhood of p can be evenly covered by all the covering spaces of X_0. By Theorem 2.2, X_0 fails to have a universal covering space.

This same space also provides an example of the composition of two covering maps failing to be a covering map. There is a covering space (Y, g) of X_0 where Y is a subspace of the Riemann surface of $\log(z - c_0)$. Actually Y is still a plane curve, a line with blocks of circles C_{ij} all tangent to it, where $g^{-1}(C_i) = \bigcup_{j=-\infty}^{\infty} C_{ij}$. Roughly speaking, one obtains Y by "unwinding" the circle C_0 in X_0. Y can be arranged in the plane so that the centers of the circles C_{kk} are at the points $2\pi k$, for $k = 1, 2, \cdots$, on the real axis and the line, which is C_0 unwound, is below the real axis. Then there is a covering space (W, h) of Y in the Riemann surface of $\log \sin z$, where h is the restriction of the projection. The composition $h \circ g$ cannot evenly cover any neighborhood of p in X_0.

Note. It has come to our attention that Theorem 2.2 and its corollary appeared in Banaschewski: Zur Existenz Von universellen Überlagerungen, Math. Nachr. vol. 15 (1956) pp. 175–180, for connected locally connected space. While we simply apply a modification of Chevalley's method, Banaschewski's methods are entirely different.
ONE DIMENSIONAL TOPOLOGICAL LATTICES

LEE W. ANDERSON

1. By a topological lattice we mean a Hausdorff space L and a pair of continuous functions $\lor : L \times L \to L$ and $\land : L \times L \to L$ which satisfy the usual conditions stipulated for a lattice in Birkhoff [2, p. 18]. The purpose of this paper is to prove the

MAIN THEOREM. A locally compact, connected, one dimensional topological lattice is a chain.

The lattice theoretic terminology used in this paper is consistent with Birkhoff [2]. The topological terms can be found in [5] or [8] with the following exceptions. If X and Y are sets, $X \setminus Y$ denotes the relative compliment of Y with respect to X. If A is a subset of a topological space then A^*, A^0 and $F(A) = A^* \setminus A^0$ denote the topological closure, interior and boundary of A. The symbol \emptyset denotes the empty set.

We will agree that in usage of words common to topology and lattice theory, the topological meaning will take precedence. Thus to say that a subset A of a topological lattice is closed means $A = A^*$ and not $A \land A \subseteq A$ or $A \lor A \subseteq A$.

If L is a lattice and A is a subset of L we let

$$C(A) = (A \land L) \land (A \lor L).$$

If $A = C(A)$ we say that A is a convex subset of L. It is clear that the set A is convex if, and only if, $x \lor (y \land L) \subseteq A$ whenever x and y are elements of A with $x \leq y$. A topological lattice is locally convex if, and only if, whenever x is an element of an open set U there is an open convex set V with $x \in V \subseteq U$.

Received by the editors October 1, 1955 and, in revised form, April 21, 1958.

1 This work was supported in part by a National Science Foundation Grant.