Construction of some sets of mutually orthogonal latin squares

Author:
E. T. Parker

Journal:
Proc. Amer. Math. Soc. **10** (1959), 946-949

MSC:
Primary 05.00

DOI:
https://doi.org/10.1090/S0002-9939-1959-0109789-9

MathSciNet review:
0109789

Full-text PDF Free Access

References | Similar Articles | Additional Information

**[1]**H. F. MacNeish,*Euler squares*, Ann. of Math. vol. 23 (1921-1922) pp. 221-227. MR**1502613****[2]**H. B. Mann,*The construction of orthogonal latin squares*, Ann. Math. Statist. vol. 13 (1942) pp. 418-423. MR**0007736 (4:184b)****[3]**-,*Analysis and design of experiments*, New York, Dover, 1949.**[4]**Marshall Hall, Jr.,*Projective planes*, Trans. Amer. Math. Soc. vol. 54 (1943) pp. 229-277, Theorem 5.2. MR**0008892 (5:72c)****[5]**W. Burnside,*Theory of groups of finite order*, 2d ed., Cambridge University Press, 1911; reprinted New York, Dover, 1955, p. 182. MR**0069818 (16:1086c)****[6]**James Singer,*A theorem in finite projective geometry and some applications to number theory*, Trans. Amer. Math. Soc. vol. 43 (1938) pp. 377-385. MR**1501951****[7]**R. H. Bruck and H. J. Ryser,*The non-existence of certain finite projective planes*, Canad. J. Math. vol. 1 (1949) pp. 88-93. MR**0027520 (10:319b)****[8]**S. K. Stein,*On the foundations of quasigroups*, Trans. Amer. Math. Soc. vol. 85 (1957) pp. 228-256. MR**0094404 (20:922)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
05.00

Retrieve articles in all journals with MSC: 05.00

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1959-0109789-9

Article copyright:
© Copyright 1959
American Mathematical Society