Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Construction of some sets of mutually orthogonal latin squares


Author: E. T. Parker
Journal: Proc. Amer. Math. Soc. 10 (1959), 946-949
MSC: Primary 05.00
DOI: https://doi.org/10.1090/S0002-9939-1959-0109789-9
MathSciNet review: 0109789
Full-text PDF Free Access

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] H. F. MacNeish, Euler squares, Ann. of Math. vol. 23 (1921-1922) pp. 221-227. MR 1502613
  • [2] H. B. Mann, The construction of orthogonal latin squares, Ann. Math. Statist. vol. 13 (1942) pp. 418-423. MR 0007736 (4:184b)
  • [3] -, Analysis and design of experiments, New York, Dover, 1949.
  • [4] Marshall Hall, Jr., Projective planes, Trans. Amer. Math. Soc. vol. 54 (1943) pp. 229-277, Theorem 5.2. MR 0008892 (5:72c)
  • [5] W. Burnside, Theory of groups of finite order, 2d ed., Cambridge University Press, 1911; reprinted New York, Dover, 1955, p. 182. MR 0069818 (16:1086c)
  • [6] James Singer, A theorem in finite projective geometry and some applications to number theory, Trans. Amer. Math. Soc. vol. 43 (1938) pp. 377-385. MR 1501951
  • [7] R. H. Bruck and H. J. Ryser, The non-existence of certain finite projective planes, Canad. J. Math. vol. 1 (1949) pp. 88-93. MR 0027520 (10:319b)
  • [8] S. K. Stein, On the foundations of quasigroups, Trans. Amer. Math. Soc. vol. 85 (1957) pp. 228-256. MR 0094404 (20:922)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 05.00

Retrieve articles in all journals with MSC: 05.00


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1959-0109789-9
Article copyright: © Copyright 1959 American Mathematical Society

American Mathematical Society