MODULARITY RELATIONS IN LATTICES

R. J. MIHALEK

1. Introduction. Linear independence has been formulated lattice-theoretically by G. Birkhoff [1], J. von Neumann [4] and, in particular, L. R. Wilcox [5], who studied it in connection with ordinary modularity considered as a binary relation. In this work, the concept of a modularity relation is defined abstractly from which the theory of independence is developed. These results generalize those of S. Maeda [2] whose abstraction of independence characterizes ordinary independence. Also quasi-modularity relations are considered abstractly, which relations arise in the theory of quasi-dual-ideals [7]. Relations studied earlier by the author [3] are shown to be instances of the abstract relations considered here.

Throughout this paper L is to be a lattice with order \(\leq \), join + and meet \(\cdot \). For \(b, c \in L \), \((b, c)M\) (read \((b, c)\) modular) means \((a+b)c = ac + bc\) for every \(a \leq c \) \((M\) will be referred to as ordinary modularity).

The notations \(\subset, +, \cdot, \emptyset, \times \) are respectively set-theoretic inclusion, sum, product, the empty set and cartesian product, and the set of all elements \(x \) with the property \(E(x) \) is denoted by \([x; E(x)]\).

2. Modularity relations and independence. First, the notion of a modularity relation is defined abstractly, which is then used in the definition of the independence relation and the development of the independence theory.

(2.1) Definition. Let \(R \subset T \subset L \times L \). The relation \(R \) is a modularity relation under \(T \) means

(a) \((b, c)R, b' \leq b, c' \leq c, b'c' = bc, (b', c')T \) implies \((b', c')R\);

(b) \((c, d)R, (b, c+d)R, b(c+d) = cd \) implies \((b+c, d)R, (b+c)d = cd\).

Part (a) of the definition would be too broad for the purposes considered here if the condition \((b', c')T\) were omitted from the hypotheses. The set \(T \) is introduced merely to provide a control on the pairs that are eligible to be in \(R \) and its role will become evident in the examples considered in the subsequent sections.

(2.2) Definition. For \(R \) a modularity relation under \(T \), \(R \) is said

(a) to satisfy the intersection property if \((c, d)R, (b, c+d)R, b(c+d) = cd \) implies \((b+d)(c+d) = d\);

(b) to be symmetric at \(a \), for \(a \in L \), if \((b, c)R, bc = a \) implies \((c, b)R\).

Examples exist showing that a modularity relation does not necessarily satisfy these properties.
(2.3) Definition. Let R be a modularity relation under T. For $n \geq 2$, $a, a_1, \ldots, a_n \in L$, $(a_1, \ldots, a_n)_R a$ (read (a_1, \ldots, a_n) R-independent over a) means $(\sum_U a_i, \sum_V a_i)_R R$ for every nonempty $U, V \subset [1, \ldots, n]$ such that $j < k$ for $j \in U, k \in V$.

Throughout this section it is assumed that R is a modularity relation under T, $n \geq 2$ and $a, a_1, \ldots, a_n \in L$.

(2.4) Corollary. Let $(a_1, \ldots, a_n)_R a$.

(a) If $a_i \neq a$ for $1 \leq i \leq n$, then $a_i \neq a$ for $i \neq j$.

(b) If $1 \leq k_1 < \cdots < k_m \leq n$, $m \geq 2$, then $(a_{k_1}, \ldots, a_{k_m})_R a$.

(c) If $a \leq a'_i \leq a_i$ for $1 \leq i \leq n$, then $(a_i', \ldots, a_n')_R a$ provided $(\sum_U a'_i, \sum_V a'_i)_T$ for every nonempty $U, V \subset [1, \ldots, n]$ such that $j < k$ for $j \in U, k \in V$.

(2.5) Theorem. If $(a_1, \ldots, a_n)_R a$, then $(a_i, a_{i+1} + \cdots + a_n)_R a$ for every $i = 1, \ldots, n-1$, and conversely, provided $(\sum_V a_i)_T$ for every nonempty $V \subset [1, \ldots, n]$.

Proof. The forward implication is immediate. The reverse is obvious for $n = 2$. Suppose it holds for $q \leq n - 1$ where $n \geq 3$. Let $(a_i, a_{i+1} + \cdots + a_n)_R a$ for $i = 1, \ldots, n-1$ and let $U, V \subset [1, \ldots, n]$ such that U, V are nonempty and $j < k$ for $j \in U, k \in V$. Denote U by $[j_1, \ldots, j_u]$ and V by $[k_1, \ldots, k_v]$, where, without loss of generality, $j_1 < \cdots < j_u < k_1 < \cdots < k_v$. Then by (2.4.c),

$$(a_{j_i}, a_{j_i+1} + \cdots + a_{k_i})_R a$$

and

$$(a_{k_i}, a_{k_i+1} + \cdots + a_{k_v})_R a$$

for $i = 1, \ldots, u$.

In case $U + V = [1, \ldots, n]$, it follows from the induction hypothesis that $(a_{j_1}, \ldots, a_{j_u}, a_{k_1}, \ldots, a_{k_v})_R a$, whence $(\sum_V a_i)_R a$. Let $U + V = [1, \ldots, n]$. From the above argument,

$$\left(a_{j_1} + \cdots + a_{j_u}, \sum_V a_i \right)_R a,$$

and by hypotheses, $(a_{j_1}, a_{j_2} + \cdots + a_{j_u} + \sum_V a_i)_R a$. Thus (2.1.b) yields $(\sum_V a_i)_R a$. Hence the reverse implication holds for $q = n$ and the result follows by induction.

(2.6) Theorem. Let R satisfy the intersection property. If $(a_1, \ldots, a_n)_R a$, then $(\sum_U a_i)(\sum_V a_i) = \sum_{UV} a_i$ for every $U, V \subset [1, \ldots, n]$ such that $UV \neq \emptyset$ and $j < k < m$ for $j \in U - UV, k \in V - UV, m \in UV$.

Proof. Let $W = U - UV, X = V - UV$. Then by the hypotheses,
modularity relations in lattices

whence

(\sum_w a_i + \sum_{uv} a_i)(\sum_x a_i + \sum_{uv} a_i) = \sum_{uv} a_i \text{ by virtue of the intersection property.}

(2.7) Lemma. Let \(R \) satisfy the intersection property. If \((a_1, \ldots, a_n)Ra, U + V = [1, \ldots, n], UV = \emptyset, \) then

\((\sum_{a_1})(\sum_{v} a_i) = (a_n)(\sum_{u} a_i)(\sum_{v} a_i). \)

Proof. Let \(U, V \not= \emptyset \) and let \(1 \in U. \) Partition the set \([1, \ldots, n]\) with sets \(W_i \) defined so that \(W_{2i-1} \subset U, W_{2i} \subset V, \) and \(j' < k' \) for \(j' \in W_j, k' \in W_k, j < k. \) (The existence of such a partition is readily proved inductively.) Then \(1 \in W_1 \) and for some \(m, n \in W_m. \) The result is immediate for \(m = 2; \) let \(m \geq 3. \) Define \(b_j = \sum_{w_j} a_i \) for \(1 \leq j \leq m. \) Then

\((\sum_{v} a_i)(\sum_{v} a_i) = (\sum_{u} a_i)(b_1 + \sum_{2} a_i)(b_2 + \sum_{3} a_i)(\sum_{v} a_i) = (\sum_{u} a_i)(\sum_{v} a_i)(\sum_{v} a_i), \) the last equality holding by virtue of the intersection property. For \(m \geq 4, \) let \(3 \leq q < m. \) Then

\[
\left(\sum_{1}^{q-1} b_i + \sum_{q+1}^{m} b_i \right) \geq \sum_{U} a_i
\]

or \(\sum_{v} a_i \) according as \(q \) is even or odd. Thus

\[
(\sum_{U} a_i)(\sum_{q} b_i)(\sum_{V} a_i)
= (\sum_{U} a_i)(\sum_{1}^{q-1} b_i + \sum_{q+1}^{m} b_i)(b_q + \sum_{q+1}^{m} b_i)(\sum_{V} a_i)
= (\sum_{U} a_i)(\sum_{q+1}^{m} b_i)(\sum_{V} a_i).
\]

Therefore

\[
(\sum_{U} a_i)(\sum_{V} a_i) = (\sum_{U} a_i)(b_m)(\sum_{V} a_i).
\]

Let \(X = W_m - [n] \) with \(X \not= \emptyset; \) otherwise, the proof is complete. Then

\[
(\sum_{1}^{m-1} b_i + a_n) \geq \sum_{U} a_i \text{ or } \sum_{V} a_i \text{ according as } m \text{ is even or odd, whence}
\]

\[
(\sum_{U} a_i)(b_m)(\sum_{V} a_i)
= (\sum_{U} a_i)(\sum_{1}^{m-1} b_i + a_n)(\sum_{X} a_i + a_n)(\sum_{V} a_i)
= (\sum_{U} a_i)(a_n)(\sum_{V} a_i).
\]
Hence
\[
\left(\sum_U a_i \right) \left(\sum_V a_i \right) = (a_n) \left(\sum_U a_i \right) \left(\sum_V a_i \right).
\]

(2.8) Theorem. Let \(R \) satisfy the intersection property. If \((a_1, \ldots, a_n) \in R_a\), then for nonempty disjoint \(U, V \subseteq [1, \ldots, n]\),
\[
(\sum_U a_i)(\sum_V a_i) = a.
\]

Proof. The result is immediate for \(n = 2 \). Suppose it holds for \(g \leq n-1 \) where \(n \geq 3 \). Then it holds for \(U + V \neq [1, \ldots, n] \), with an application of (2.4.b). Let \(U + V = [1, \ldots, n] \). From the lemma,
\[
(\sum_U a_i)(\sum_V a_i) = (a_n)(\sum_U a_i)(\sum_V a_i).
\]
Let \(n \in V \). Then for \(V = [n] \),
\[
(\sum_U a_i)(\sum_V a_i) = a \text{ by definition}, \quad \text{and for } V \neq [n], \quad (\sum_U a_i)(\sum_V a_i) = (a_n)(\sum_U a_i)(\sum_V a_i) = a \sum_V a_i = a \text{ by the induction hypothesis}.
\]
Similarly, for \(n \in U \),
\[
(\sum_U a_i)(\sum_V a_i) = a \text{ by the induction hypothesis}.
\]
Hence the result holds for \(n = q \) and the proof is complete.

(2.9) Definition. Define \((a_1, \ldots, a_n) \in R_a \) (read \((a_1, \ldots, a_n) \text{ symmetrically } R\text{-independent over } a\)) to mean \((a_n, \ldots, a_1) \in R_a \) for every permutation \((i_1, \ldots, i_n)\) of the integers \([1, \ldots, n]\).

(2.10) Corollary. (a) The relation \(R_a \) is symmetric. (b) If \((a_1, \ldots, a_n) \in R_a \), then \((a_1, \ldots, a_n) \in R_a \).

(2.11) Theorem. If \((a_1, \ldots, a_n) \in R_a \), then \((a_j, \sum_{i \neq j} a_i) \in R_a \) for \(1 \leq j \leq n \), and conversely, provided \((a_j, \sum_V a_i) \in T \) for every nonempty \(V \subseteq [1, \ldots, n] \) such that \(j \notin V \).

Proof. This follows from (2.5) in a manner similar to the corresponding result in [5].

(2.12) Theorem. Let \(R \) satisfy the intersection property. If \((a_1, \ldots, a_n) \in R_a \), then \((\sum_U a_i)(\sum_V a_i) = \sum_{UV} a_i \) for every \(U, V \subseteq [1, \ldots, n] \) such that \(UV \neq \emptyset \).

Proof. Let \(U \subseteq V \) and \(V \subseteq U \). Then let \(U - UV = [i_1, \ldots, i_u] \), \(V - UV = [j_1, \ldots, j_v] \), \(UV = [k_1, \ldots, k_w] \), where the \(i_m, j_m \) and \(k_m \) are distinct. Define
\[
b_m = \begin{cases}
a_{i_m} & \text{for } 1 \leq m \leq u, \\
a_{j_m-u} & \text{for } u + 1 \leq m \leq u + v, \\
a_{k_m-u-v} & \text{for } u + v + 1 \leq m \leq u + v + w.
\end{cases}
\]

Then \((b_1, \ldots, b_{u+v+w}) \in R_a \) by (2.9) and (2.4.b). Also
\[
U' = [1, \ldots, u, u + v + 1, \ldots, u + v + w]
\]
and

\[V' = [u + 1, \ldots, u + v + w] \]

satisfy the hypotheses of (2.6), whence

\[
\left(\sum_{U} a_i \right) \left(\sum_{V} a_i \right) = \left(\sum_{U'} b_i \right) \left(\sum_{V'} b_i \right) = \sum_{U'V'} b_i = \sum_{U'V'} a_i.
\]

In the remainder of this section, some results are stated for \(R \) symmetric at \(a \). The proofs of these results are similar to those of the corresponding results in [5] and will be omitted. In case \(R \) were a symmetric relation, it is evident that \(R \) would be symmetric at \(a \) for every \(a \in L \). If \(R \) is symmetric at \(a \), then the relation \(R_a \) is symmetric, or equivalently, \((b, c)R_a \) if and only if \((b, c)\overline{R}_a \).

(2.13) **Lemma.** Let \(R \) be symmetric at \(a \). If \((c, b, d)R_a \), then \((b, c, d)R_a \).

(2.14) **Theorem.** If \(R \) is symmetric at \(a \), then \((a_1, \ldots, a_n)\overline{R}_a \) if and only if \((a_1, \ldots, a_n)R_a \).

(2.15) **Corollary.** If \(R \) is symmetric at \(a \), then \((a_1, \ldots, a_n)R_a \) if and only if \((\sum_{U} a_i, \sum_{V} a_i)R_a \) for every nonempty disjoint \(U, V \subset \{1, \ldots, n\} \).

(2.16) **Theorem.** Let \(R \) be symmetric at \(a \) and let \(b_1, \ldots, b_m \in L \) where \(m \geq 2 \). If \((a_1, \ldots, a_n)R_a \), \((b_1, \ldots, b_m)R_a \) and \((\sum_{U} a_i, \sum_{V} b_i)R_a \), then \((a_1, \ldots, a_n, b_1, \ldots, b_m)R_a \).

(2.17) **Corollary.** Let \(R \) be symmetric at \(a \) and for \(j = 1, \ldots, n \), let \(m_j \geq 2 \) and \(a_{ij} \in L \) for \(i = 1, \ldots, m_j \). If \((a_{ij}, \ldots, a_{m_{ij}})R_a \) for \(j = 1, \ldots, n \) and if \((\sum_{U} a_{1i}, \ldots, \sum_{U} a_{ni})R_a \), then

\[
(a_{11}, \ldots, a_{m_{11}}, \ldots, a_{1n}, \ldots, a_{mn})R_a.
\]

3. **Quasi-modularity relations.** In the study of quasi-dual-ideals, the relations of weak modularity, as denoted by Wilcox [7], and quasi-modularity, as denoted by the author [3], arise with properties similar to those of ordinary modularity. In this section the material of §2 is applied in an abstraction of these relations.

(3.1) **Definition.** A nonempty subset \(S \) of \(L \) is a quasi-dual-ideal (q.d.i.) if

(a) \(x \in S \), \(y \geq x \) implies \(y \in S \);
(b) \(x, y \in S \), \((x, y)M \) implies \(xy \in S \).

The smallest q.d.i. containing a set \(T \) (or elements \(a, b, c, \ldots \)) is denoted by \(\{T\} \) (or \(\{a, b, c, \ldots\} \)). The set of all q.d.i. is \(\mathcal{Q} \) and the set of all principal q.d.i. (of the form \(\{a\} \)) is \(\mathcal{S} \). For \(\alpha, \beta \in \mathcal{Q} \),
\(\alpha \leq \beta \) means \(\alpha \supset \beta \), \(\alpha \cup \beta = \alpha \cdot \beta \) and \(\alpha \cap \beta = \{\alpha + \beta\} \).

It is useful to note that the principal q.d.i. of \(L \) coincide with the principal dual ideals of \(L \). For the next corollary and for all statements with reference to \(L \) in the remainder of the paper, it is assumed that \(\text{l.u.b.} \ L = 1 \) exists.

(3.2) Corollary. The set \(L \) is a complete lattice with respect to \(\leq \); the lattice operations are \(\cup \), \(\cap \), and \(L \) and \(\{1\} \) are the zero and unit respectively. If \((b, c)M, \ (b, c) = \{bc\} \). The lattice \(L \) is isomorphic to the set \(S \), a lattice subset (not necessarily a sublattice) of \(L \), under \(a \rightarrow \{a\} \).

Proof. In \(S \), \(\text{l.u.b.} \ [\{a\}, \{b\}] = \{a+b\} \) and \(\text{g.l.b.} \ [\{a\}, \{b\}] = \{ab\} \). The isomorphism now follows and the remainder is immediate.

(3.3) Definition. Let \(Q \subset L \times L \). Then \(Q \) is a quasi-modularity relation means that \(Q = [(\{b\}, \{c\}); (b, c)Q] \) is a modularity relation under \(S \times S \) in \(L \). For \(Q \) a quasi-modularity relation, \(Q \) is said to satisfy the intersection property (to be symmetric at \(\alpha \), for \(\alpha \in L \)) if \(Q \) satisfies the intersection property (if \(Q \) is symmetric at \(\alpha \)) in \(L \).

(3.4) Definition. Let \(Q \) be a quasi-modularity relation. For \(n \geq 2, a_1, \ldots, a_n \in L \) and \(\alpha \in L \), \((a_1, \ldots, a_n)Q_{\alpha} \) (read \((a_1, \ldots, a_n) \) \(Q \)-quasi-independent over \(\alpha \)) means \((\{a_1\}, \ldots, \{a_n\})Q_{\alpha} \) where \(Q \) is defined as in (3.3).

(3.5) Corollary. If \((a_1, \ldots, a_n)Q_{\alpha} \), then \(\sum_{U} a_i, \sum_{V} a_i \) \(Q \), \(\{\sum_{U} a_i, \sum_{V} a_i\} = \alpha \) for every nonempty \(U, V \subset [1, \ldots, n] \) such that \(j < k \) for \(j \in U, k \in V \), and conversely.

The corollary shows the analogy between \(Q \)-quasi-independence over a q.d.i. of \(L \) and \(R \)-independence over an element of \(L \) as defined in (2.3). The results of the independence theory of the previous section may be applied to \(Q \), yielding a corresponding theory for \(Q \). If one keeps in mind the equalities \(\{b\} \cup \{c\} = \{b+c\}, \{b\} \cap \{c\} = \{b, c\} \) and that \(\alpha \leq \{a\} \) means \(a \in \alpha \), the independence theory for \(Q \) may be stated free of the notation of the lattice \(L \).

4. Examples. An example of a modularity relation is obtained from a special case of relative modularity, the latter being a relativization of ordinary modularity.

(4.1) Definition. For \(S \subset L, b, c \in L \), \((b, c)M_S \) (read \((b, c) \) modular relative to \(S \)) means \((a+b)c = a+bc \) for every \(a \in S \) such that \(a \leq c \).

Evidently, \(M = M_L \). In addition, \(M_S \) satisfies many of the properties of \(M \), some in a modified form. In particular, the next lemma is of interest.
(4.2) **Lemma.** If \((b, c)M_S, b' \leq b, c' \leq c, b'c' = bc\), then \((b', c')M_S\).

Proof. Let \(a \leq c'\), \(a \in S\). Then \((a+b')c' \leq (a+b)c = a+bc = a+b'c'\), whence \((b', c')M_S\) since the reverse inequality \((a+b')c' \geq a+b'c'\) holds universally for \(a \leq c'\).

(4.3) **Theorem.** If \(S\) is join-closed, then \(R = (S \times L) \cdot M_S\) is a modularity relation under \(S \times L\).

Proof. Part (a) of (2.1) readily follows with an application of (4.2). For Part (b), let \((c, d)R, (b, c+d)R, b(c+d) = cd\). Then \(b, c \in S\), \((b+c, d) \in S \times L\) and \(b(c+d) \leq c\). Now let \(a \leq d, a \in S\). Then \(a+c \in S\), \(a+c \leq c+d\) and

\[
(a + (b + c))d = ((a + c) + b)(c + d) = ((a + c) + b(c + d))d = (a + (c + b(c + d)))d = (a + c)d = a + cd \leq a + (b + c)d.
\]

Thus \((b+c, d)M_S\), whence \((b+c, d)R\). Also

\[
(b + c)d = (c + b)(c + d)d = (c + b(c + d))d = cd.
\]

(4.4) **Theorem.** If \(S\) is join-closed, then \(R = (S \times S) \cdot M_S\) is a modularity relation under \(S \times S\) satisfying the intersection property.

Proof. The proof that \(R\) is a modularity relation under \(S \times S\) is essentially the proof of (4.3). For the remainder, let \((c, d)R, (b, c+d)R, b(c+d) = cd\). Then \(d \in S\), \(b(c+d) \leq d\) and since \((b, c+d)M_S, (b+d) \cdot (c+d) = d+b(c+d) = d\).

Two examples of quasi-modularity relations are now considered.

(4.5) **Definition.** For \(b, c \in L\),

(a) \((b, c)M_0\) (read \((b, c)\) weakly modular) means \(\{a+b, c\} = \{a\}\) \(\cup \{b, c\}\) for every \(a \leq c\);

(b) \((b, c)M_q\) (read \((b, c)\) quasi-modal) means \((b, c)M_S\) where \(S = \{b, c\}\).

(4.6) **Theorem.** The relations \(M_0\) and \(M_q\) are quasi-modularity relations satisfying the intersection property.

The proof of this theorem is omitted. It is of interest to note that always \(M_0 \subset M_q\) and that examples of left-complemented \([6]\) lattices exist for which the inclusion is proper.

To show that the notion of a modularity relation is more general than ordinary modularity, one may consider the relation \(Q\) in \(L\) corresponding to \(M_0\), which is incidentally \((S \times S) \cdot M_S\). In case \(L\) is not a modular lattice, this \(Q\), although a modularity relation, is not ordinary modularity for \(L\).
REFERENCES

ILLINOIS INSTITUTE OF TECHNOLOGY