SUMS OF STATIONARY RANDOM VARIABLES

ENDERS A. ROBINSON

A sequence \(x(t) (\infty < t < \infty, t \text{ an integer}) \) of elements in Hilbert space is called stationary if the inner product \((x(t+s), x(t)) \) does not depend upon \(t \). If the Hilbert space is \(L^2 \) space with probability measure, then \(x(t) \) is a random variable and the sequence \(x(t) (\infty < t < \infty) \) is called a second-order stationary random process. Let \(X \) be the closed linear manifold spanned by all the elements of the stationary process. Then Kolmogorov [1] has shown that the equation \(x(t) U = x(t+1), \infty < t < \infty \), uniquely determines the unitary operator \(U \) with domain and range \(X \). Using the von Neumann [2] spectral representation of \(U \), we obtain the spectral representation of the random process

\[
x(t) = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} e^{2\pi i u t} dx(0)E(u), \quad -\infty < t < \infty.
\]

The von Neumann [3] ergodic theorem, in the framework of Khintchine [4], is applicable, and shows that the average \(\sum_{t} x(t)/n \) converges in the mean to the random variable \(x(0)[E(0+) - E(0-)] \) as \(n \to \infty \). In this paper we consider sums instead of averages; that is, we consider \(\sum_{t} x(t) \), and establish the following theorem.

THEOREM. Let the random variables \(x(t) (\infty < t < \infty, t \text{ an integer}) \) be a second-order stationary random process with spectral distribution function \(F(u) \). For variance \(\{ \sum_{t} x(t) \} \) to be bounded for all positive integers \(n \), each of the following two conditions is necessary and sufficient:

1. \(\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin^{-2} u dF(u) < \infty \).

2. There is a second-order stationary random process \(y(t) (\infty < t < \infty) \) satisfying \(y(t) - y(t+1) = x(t) \).

PROOF. (NECESSARY CONDITIONS). We are given that variance \(\{ \sum_{t} x(t) \} < B \) for all positive integers \(n \). Without loss of generality we assume that the \(x(t) \) are centered so that their mean values are zero. Then

Presented to the Society, February 28, 1959; received by the editors April 6, 1959.

1 This paper was sponsored by the United States Army under Contract No. DA-11-022-ORD-2059 at the Mathematics Research Center, United States Army, Madison, Wisconsin.
variance \left\{ \sum_{1}^{n} x(t) \right\} = \left(\sum_{1}^{n} x(t), \sum_{1}^{n} x(t) \right).

From the spectral representation we have

\[\sum_{1}^{n} x(t) = \int_{-.5}^{.5} e^{2\pi i u} \frac{1 - e^{2\pi i u}}{1 - e^{2\pi i u}} \, dx(0)E(u), \]

so

\[\text{variance} \left\{ \sum_{1}^{n} x(t) \right\} = \int_{-.5}^{.5} \frac{1 - e^{2\pi i u}}{1 - e^{2\pi i u}} \, dF(u), \]

where \(F(u) = \|x(0)E(u)\|^2, \, -.5 \leq u \leq .5, \) is the spectral distribution function. Hence we have

\[\mathcal{B} > \text{variance} \left\{ \sum_{1}^{n} x(t) \right\} = \left\{ \int_{-.5}^{0^-} + \int_{0^+}^{.5} \right\} \sin^2 \pi u \, dF(u) \]

\[+ n^2[F(0^+) - F(0^-)] \]

which shows that \(F(0^+) - F(0^-) \) must vanish. Moreover, we have

\[\mathcal{B} > \frac{1}{\mathcal{N}} \sum_{n=1}^{\mathcal{N}} \left\{ \int_{-.5}^{0^-} + \int_{0^+}^{.5} \right\} \frac{\sin^2 \pi u}{\sin^2 \pi u} \, dF(u) \]

\[= \left\{ \int_{-.5}^{0^-} + \int_{0^+}^{.5} \right\} \left[\frac{1}{\mathcal{N}} \sum_{n=1}^{\mathcal{N}} \left(\frac{1}{2} - \frac{1}{2} \cos 2\pi u \right) \right] \sin^{-2} \pi u dF(u). \]

Clearly the limit of the expression in brackets, as \(\mathcal{N} \to \infty, \) is 1/2, so \(\int_{-.5}^{.5} \sin^{-2} \pi u dF(u) \) is finite. Q.E.D. (1).

The distribution function \(F(u) \) defines a Lebesgue-Stieltjes measure on the real line segment \(-.5 \leq u \leq .5.\) Let \(W \) denote the \(L^2 \) space of complex-valued measurable functions \(\Phi(u) \) defined on \(-.5 \leq u \leq .5 \) for this measure. Define a correspondence between an element \(x \) of \(X \) and an element \(\Phi(u) \) of \(W \) by

\[x = \int_{-.5}^{.5} \Phi(u) \, dx(0)E(u) \leftrightarrow \Phi(u). \]

Then Stone [5] and Kolmogorov [1] have shown that this correspondence establishes an isomorphism between \(X \) and \(W \) that preserves inner products. The function \(e^{2\pi i u}/(1 - e^{2\pi i u}) \) belongs to \(W \) since

\[\int_{-.5}^{.5} \left| \frac{e^{2\pi i u}}{1 - e^{2\pi i u}} \right|^2 \, dF(u) = \frac{1}{4} \int_{-.5}^{.5} \sin^{-2} \pi u d\mu < \infty. \]
If we define the element $y(t)$ of X by the correspondence $y(t) \leftrightarrow e^{2\pi i ut}/(1-e^{2\pi i u})$ we see that

$$y(t) - y(t+1) \leftrightarrow \frac{e^{2\pi i ut} - e^{2\pi i u(t+1)}}{1 - e^{2\pi i u}} = e^{2\pi i ut}.$$

But by the spectral representation, we know that $x(t) \leftrightarrow e^{2\pi i ut}$, and hence we have $y(t) - y(t+1) = x(t)$ for all integers t. Since

$$(y(t + s), y(t)) = \int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{e^{2\pi i u(t+s)}e^{-2\pi i ut}}{1 - e^{2\pi i u}} dF(u) = \frac{1}{4} \int_{-\frac{1}{2}}^{\frac{1}{2}} e^{2\pi i us} \sin^{-2} \pi u dF(u)$$

depends only on s, we see that $y(t)$ is a stationary random process. Q.E.D. (2).

Proof. (Sufficient conditions). Let condition (1) of the theorem be given. Since

$$\text{variance } \left\{ \sum_{1}^{n} x(t) \right\} = \int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{\sin^{2} \pi u}{\sin^{2} \pi u} dF(u) \leq \int_{-\frac{1}{2}}^{\frac{1}{2}} \sin^{-2} \pi u dF(u)$$

we see that the variance is bounded. Q.E.D. (1).

Let condition (2) of the theorem be given. Then $\|y(t)\|$ is a finite constant. Because $\sum_{1}^{n} x(t) = y(1) - y(n+1)$ we have $\|\sum_{1}^{n} x(t)\| \leq \|y(1)\| + \|y(n+1)\|$, and so variance $\left\{ \sum_{1}^{n} x(t) \right\} = \|\sum_{1}^{n} x(t)\|^{2}$ is bounded. Q.E.D. (2).

References

Mathematics Research Center, United States Army, Madison, Wisconsin