COMPACT LINEAR TRANSFORMATIONS
C. T. TAAM

1. Consider a compact linear transformation T (also called completely continuous transformation) from a Banach space A to a Banach space B. Can T be approximated arbitrarily close in norm by bounded linear transformations whose ranges are finite dimensional (see [1, p. 49])? The answer is affirmative for the following types of domain and range spaces: (i) both A and B are Hilbert spaces (see [2, p. 204]), (ii) both A and B are $C[0, 1]$ (see [2, p. 222] or [3]), (iii) there is no other restriction on A, but B is of “type A” [4], (iv) A is either L^p or C and there is no other restriction on B (see [5, p. 536]). In this paper we shall show that the answer is also affirmative when A is any Banach space and B is $C(E)$, E being a compact Hausdorff space.

Let S^* be the strongly closed unit sphere in the conjugate space B^*, namely the set of all linear functionals of unit norm or less. S^* is a compact Hausdorff space in the relative topology introduced in S^* by the weak * topology of B^* (see [1, p. 37]). For convenience, we continue to call this relative topology in S^* the weak * topology. Denote by $C(S^*)$ the Banach algebra of all the complex-valued weak *-continuous functions in S^*. For each x in B, the mapping $x \rightarrow x^{**}$ is an isometric isomorphism embedding B as a subspace of B^{**}, and $x^{**} \rightarrow x^{**}$ (restricted to S^*) is also an isomorphism satisfying

$$||x^{**}|| = \sup_{F \in S^*} |x^{**}(F)| = ||x^{**}||_\infty;$$

where $||x^{**}||_\infty$ is the uniform norm of x^{**} restricted to S^*. Hence we can embed B as a subspace of $C(S^*)$ under the isometric isomorphism $x \rightarrow x^{**}$ (restricted to S^*). Consequently, by embedding B in $C(S^*)$, a compact linear transformation T from a Banach space A to a Banach space B can be approximated arbitrarily close in norm by bounded linear transformations of finite dimensional range from A to $C(S^*)$. (See §3.)

The ideas in §§2 and 3 are suggested by those of Radon in [3]; (see also [2, p. 222]). Throughout this note, $C(E)$ denotes the Banach algebra of all complex-valued continuous functions defined on a compact Hausdorff space E, and $(T^*F)(x)$ means $(Tx)(F)$, for x in A, Tx in $C(E)$ and F in E.

Presented to the Society, January 22, 1959, under the title On compact linear transformations in Banach space; received by the editors April 8, 1959.
2. In this section we shall establish the following result:
Let T be a compact linear transformation from a Banach space A to the space $C(E)$. Then T^* is a continuous mapping on E to A^*. (Here A^* is given the usual norm topology.)

Proof. Take a fixed F_0 in E. To each $\epsilon > 0$, we have to show that there is an open set O in E containing F_0 such that

$$
\|T^* F - T^* F_0\| < \epsilon \quad \text{for all } F \in O.
$$

Suppose that this is not true. Then there is an $\epsilon = 2\epsilon_0 > 0$ such that (1) is satisfied by no open set O in E containing F_0. We show that it leads to contradiction.

By virtue of the compactness of T, the image $T(S)$ of the closed unit sphere S in A is separable and hence contains a sequence $\{z_n\}$ dense in the closure of $T(S)$.

The sets $U_{m,n} = \{ F \mid \|z_m(F) - z_m(F_0)\| < 1/n, F \in E \}$ are open sets in E and form a sequence $\{V_k\}$. Let O_n be the intersection of V_1, V_2, \ldots and V_n. Clearly F_0 lies in each O_n and $\{O_n\}$ is monotonic decreasing. By the supposition, for each n, there exists a F_n in O_n such that $\|T^* F_n - T^* F_0\| \geq 2\epsilon_0$. But then there is a x_n in S such that

$$
|\langle T x_n \rangle(F_n) - \langle T x_n \rangle(F_0)| = |\langle T^* F_n - T^* F_0 \rangle(x_n)| > \epsilon_0.
$$

Since T is compact, we may suppose, by passing to a subsequence if necessary, that

$$
T x_n = y_n \text{ converges in norm to some } y \text{ in } C(E).
$$

As y can be approximated arbitrarily close in norm by $\{z_n\}$, to an integer p satisfying $3 < \epsilon_0 p$, there is an integer q such that

$$
\|y - z_q\|_\infty < \frac{1}{p} < \frac{\epsilon_0}{3}.
$$

Let N be so large that O_N is contained in $U_{q,p}$. Then by (4),

$$
|y(F_n) - z_q(F_n)| < 1/p, \quad |y(F_0) - z_q(F_0)| < 1/p \quad \text{and, for } n \geq N,
$$

$$
|z_q(F_n) - z_q(F_0)| < 1/p. \quad \text{Hence}
$$

$$
|y(F_n) - y(F_0)| < 3/p < \epsilon_0 \quad \text{for } n \geq N.
$$

Now that, by virtue of (3), $|y_n(F_n) - y(F_n)|$ and $|y_n(F_0) - y(F_0)|$ both tend to zero as $n \to \infty$ and (5) together show that (2) cannot hold for all n. The contradiction proves that T^* is continuous on E.

3. Let T be the transformations of §2. For each F_k in E and each $\epsilon > 0$, the set $O_k = \{ F \mid \|T^* F - T^* F_k\| < \epsilon, F \in E \}$ is open. Let g_k be a real-valued continuous function in E such that $g_k = 2$ at F_k, $g_k = 0$
outside \(O_k, 0 \leq g_k \leq 2 \). The existence of such functions is assured by the Urysohn’s lemma. Set \(U_k = \{ F | g_k(F) > 1, F \in E \} \), then \(U_k \) is an open set containing \(F_k \), and \(U_k \subset O_k \). Since \(E \) is compact, it can be covered by some finite family of sets \(U_1, U_2, \ldots, U_n \). Setting \(h_i(F) = \inf(g_i(F), 1) \), we define inductively

\[
h_m = \inf \left(\sum_{i=1}^{m-1} h_i + g_m, 1 \right) - \sum_{i=1}^{m-1} h_i, \quad m = 2, 3, \ldots, n.
\]

The functions \(h_m \) are continuous and belong to \(C(E) \). They satisfy

\[
o \leq h_i(F) \leq 1, \quad \sum_{i=1}^{n} h_i(F) = 1 \text{ in } E,
\]

\(h_i(F) \neq 0 \) implies \(F \in O_i \). For \(x \) in \(A \), define

\[
T_n x = \sum_{i=1}^{n} (Tx)(F_i)h_i.
\]

Clearly \(T_n x \) is in \(C(E) \) and the range of \(T_n \) is finite dimensional. Using the properties of the functions \(h_i \) and the definition of \(O_i \), we can see that in \(E \)

\[
\left| (Tx)(F) - (T_n x)(F) \right| = \left| (T^*F)(x) - \sum_{i=1}^{n} h_i(F)(T^*F_i)(x) \right|
\]

\[
\leq \| T^*F - \sum_{i=1}^{n} h_i(F)T^*F_i \| \| x \|
\]

\[
\leq \sum_{i=1}^{n} h_i(F) \| T^*F - T^*F_i \| \| x \|
\]

\[
< \epsilon \| x \|.
\]

Hence

\[
\| Tx - T_n x \|_\infty < \epsilon \| x \|, \quad \| T - T_n \| \leq \epsilon.
\]

We have thus proved the following result:

A compact linear transformation \(T \) from a Banach space \(A \) to the space \(C(E) \) can be approximated arbitrarily close in norm by bounded linear transformations of finite-dimensional range.

In view of the discussion in §1, it follows that

A compact linear transformation \(T \) from a Banach space \(A \) to a Banach space \(B \), embedded in \(C(S^*) \), can be approximated arbitrarily close in norm by bounded linear transformations of finite-dimensional range from \(A \) to \(C(S^*) \).
4. If a sequence of compact linear transformations converges to a limit in norm it is known that the limit is compact. (See [1, p. 49]). In view of this property, the first result in §3 can be stated as follows:

T is a compact linear transformation from a Banach space A to a Banach algebra $C(E)$ if and only if T can be approximated arbitrarily close in norm by bounded linear transformations of finite-dimensional range from A to $C(E)$.

The method in §3 uses essentially the continuity of T^*. Hence from §§2 and 3 we see that

A bounded linear transformation T from a Banach space A to a Banach algebra $C(E)$ is compact if and only if T^* is continuous from E to A^*.

As consequences of these remarks we also see that

A linear transformation from a Banach space A to a Banach space B is compact if and only if when B is embedded in $C(S^*)$ it can be approximated arbitrarily close in norm by bounded linear transformations of finite-dimensional range from A to $C(S^*)$; and

A bounded linear transformation T from a Banach space A to a Banach space B is compact if and only if T^* is weak *-continuous on S^* to A^*.

Let $\beta(A, B)(\beta(A, C(S^*)))$ be the Banach space of all compact linear transformations from the Banach space A to the Banach space $B(C(S^*))$. We can also express the above results in the following form:

$\beta(A, B)$ can be embedded in $\beta(A, C(S^*))$. The subspace of all the transformations of finite-dimensional range in $\beta(A, C(S^*))$ is dense in $\beta(A, C(S^*))$.

When $A = B$, $\beta(A, A)$ is an algebra. To apply the results above, we can embed both the domain A and range A in $C(S^*)$.

We observe that the completeness of A has not been used in this note.

References