A SUFFICIENT CONDITION FOR A MATRIC FUNCTION TO BE A PRIMARY MATRIC FUNCTION

WALTER O. PORTMANN

1. Introduction. A primary matric function is defined to be a matric function (that is, a mapping whose range and domain are sets of \(n \times n \) matrices) arising from a scalar function of a complex variable. It has been shown [1] that primary matric functions are \(H \)-analytic. In this paper other necessary conditions for a primary matric function will be exhibited and it will then be shown that these conditions are also sufficient for a matric function to be a primary function.

We will first use a form of the definition of a primary function proposed by Frobenius and later use an equivalent form proposed by Giorgi [4]. Frobenius proposed that if the scalar function \(f(z) \) is analytic at the eigenvalues of \(Z \) in \(\mathfrak{M} \) (the algebra of square matrices of order \(n \) over the complex field) then \(f(Z) \) shall be defined by

\[
 f(Z) = \frac{1}{2\pi i} \int_C \frac{f(\lambda)}{\lambda I - Z} \, d\lambda,
\]

where \(C \) is a set of admissible closed paths enclosing each of the distinct eigenvalues of \(Z \). That is, the components of \(f(Z) \) are the integrals over \(C \) of the corresponding components of the matrix \(f(\lambda)(\lambda I - Z)^{-1} \)./\(2\pi i \).

We wish to exhibit sufficient conditions on a matric function \(F(Z) \) such that there will exist a scalar function \(g(z) \) for which \(F(Z) = g(Z) \) where \(g(Z) \) may be computed as in (1.1).

2. Necessary conditions. It has previously been shown in [1] that primary matric functions are \(H \)-analytic in \(\mathfrak{M} \), that is, the component functions of a primary function \(g(Z) \) are analytic functions of the components \(z_{ij} \) of \(Z \), for \(Z \) in an \(\mathfrak{M} \)-neighborhood of a matrix at which \(g(Z) \) is defined.

If \(g(z) \) is a scalar function defined at a matrix \(X \), that is, \(g(z) \) is analytic at the eigenvalues of \(X \), and if \(Y \) is such that for some non-singular matrix \(P \), \(Y = P^{-1}XP \), then \(g \) is defined at \(Y \) and \(g(Y) = P^{-1}g(X)P \), as can be seen from (1.1).

If \(Z \) is a matrix whose eigenvalues lie in the domain of analyticity of \(g(z) \), then the \(r, s \) component of \(g(Z) \) is given by

Received by the editors January 3, 1959 and, in revised form, April 13, 1959.
1 This paper was prepared under the facilities granted by the Case Research Fund.
2 The author is now associated with Arizona State University.
A PRIMARY MATRIC FUNCTION

\[g(Z)_{rs} = \frac{1}{2\pi i} \int_{c} g(\lambda)(\lambda I - Z)_{rs}^{-1} d\lambda, \]

where \((\lambda I - Z)^{-1}\) is the \(r, s\) component of \((\lambda I - Z)^{-1}\). For an upper triangular matrix \(Z = (z_{ij})\), \(z_{ij} = 0\) for \(i > j\), a simple computation shows that \((\lambda I - Z)^{-1}\) and thus \(g(Z)_{rs}\) depend only on the \(z_{ij}\) for which \(r \leq i \leq j \leq s\) and is zero for \(r > s\). In particular, \(g(Z)_{rr} = g(r_{rr})\) for \(Z\) a diagonal (or upper triangular) matrix.

3. Sufficient conditions. We shall now show that these necessary conditions are also sufficient. For convenience the norm of a matrix \(Z = (z_{ij})\) shall be defined by \(\text{norm}(Z) = \max_{i, j} |z_{ij}|\).

Theorem 3.1. Let \(D\) be an open domain of \(H\)-analyticity of a matric function \(F\) on \(\mathbb{M}\).

(i) Let \(F\) be such that \(X\) in \(D\) and \(Y = P^{-1}XP\) implies that \(Y\) is in \(D\) and \(F(Y) = P^{-1}F(X)P\).

(ii) Let \(F\) also be such that if \(F = (t_{ij})\), in \(D\), is a diagonal matrix, then \(F(T)_{rr}\) is a function of only \(t_{rr}\), where \(F(T)_{rr}\) is the \(r, r\) component of \(F(T)\), that is

\[F(T)_{rr} = g_{rr}(t_{rr}). \]

Then there exists a scalar function \(g(z)\) such that for all \(Z\) in \(D\), \(g(Z) = F(Z)\).

Proof. Let \(C\) be a Jordan form for a matrix \(Z\) at which \(F\) is \(H\)-analytic, then \(C\) is a direct sum \(C_{p_1} + \cdots + C_{p_k}\) of canonical blocks of the form

\[C_{p_i} = \begin{bmatrix} \lambda_i & 1 & 0 & \cdots & 0 \\ \lambda_i & 1 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 1 & \vdots \\ 0 & \cdots & \cdots & \lambda_i & 1 \end{bmatrix} \]

with \(p_i\) rows and columns. (The \(\lambda_i\) occurring in different \(C_{p_i}\) need not be distinct.)

From (i) and Lemma 4.1 of [2] it follows that \(F(C)\) commutes with all matrices that commute with the canonical matrix \(C\). It is known that a matrix \(F(C)\) satisfying this condition must be a direct sum \(P_1(C_{p_1}) + \cdots + P_k(C_{p_k})\), where
and \(\alpha_{im} = \alpha_{jm} \) for \(\lambda_i = \lambda_j \) (see Turnbull and Aitken [7]).

Now, using a definition proposed by G. Giorgi which is equivalent to (1.1) [4] for \(g(Z) \) where \(g(z) \) is a scalar function, it is seen that the theorem will be proven if there exists a scalar function \(g(z) \) such that, for \(C = P^{-1}ZP \), where \(Z \) is any matrix at which \(F \) is \(H \)-analytic,

\[
(3.2) \quad \alpha_{im} = g^{(m-1)}(\lambda_j)/(m - 1)!
\]

or,

\[
(3.3) \quad F(C)_{r_jr_{j+i}} = g^{(i)}(\lambda_j)/i!, \quad j = 1, \ldots, k, i = 0, \ldots, p_j - 1,
\]

where \(F(C)_{r_jr_{j+i}} \) is the \(r_j, r_j+i \) component of \(F(C) \) (that is, \(F_{r_jr_{j+i}} \) evaluated at the components of \(C \) and \(r_j = 1 + \sum_{i=1}^{k} p_i \) for \(1 < j \leq k \), \(r_j = 1 \) for \(j = 1 \). (This choice of \(r_j \) proves (3.2) for components in the first row of each triangular block \(P_j(C_{pj}) \) of \(F(C) \) associated with \(C_{pj} \) of \(C \), which is all that is necessary, since in any such block, the values on any super diagonal are all equal.)

We shall first exhibit a scalar function \(g(z) \) which is determined by \(F \) and then show that this function has the required property (3.3).

Let \(Z \) be an arbitrary but fixed matrix such that \(F \) is \(H \)-analytic in a neighborhood of \(Z \); then \(Z \) is similar to an upper triangular matrix \(X = (x_{ij}) \) whose eigenvalues are the \(x_{ii} \). By (i) \(F \) is \(H \)-analytic in a neighborhood of \(X \). Choose any matrix \(Y = (y_{ij}) \) such that \(y_{ij} = x_{ij} \) and \(y_{ii} \neq y_{jj} \) for \(i \neq j \), and \(|y_{ii} - x_{ii}| < \epsilon \), where \(\epsilon \) is sufficiently small such that \(F \) is \(H \)-analytic at \(Y \) (such an \(\epsilon \) exists since \(F \) is \(H \)-analytic in a neighborhood of \(X \)). \(Y \) is similar to a diagonal matrix \(A = \text{diag}(y_{ii}) \) with distinct eigenvalues \(y_{ii} \) and by (i) \(F \) is \(H \)-analytic at \(A \). Now, \(A \) is similar to a diagonal matrix \(B \) obtained from \(A \) by permuting, say \(y_{ii} \) and \(y_{jj} \), and by (i), this same permutation is performed on \(F(A) \) in order to obtain \(F(B) \). Thus by (ii), \(g_{ii}(y_{ii}) = F(B)_{ii} = F(A)_{jj} = g_{jj}(y_{jj}) \). Hence for any \(j \), \(g_{jj}(z) = g_{ii}(z) \) for \(i = 1, \ldots, n \) and \(|z - x_{jj}| < \epsilon \) and therefore, since the \(F_i \) are analytic, there exists a function \(g(z) = g_{ii}(z) (= g_{ii}(z), i = 2, \ldots, n) \), analytic in the open circular domains \(|z - x_{jj}| < \epsilon, j = 1, \ldots, n \), where the \(x_{jj} \) are the eigenvalues of \(Z \). Thus, since \(Z \) is an arbitrary matrix in \(D \), there exists a function \(g(z) \) which is analytic at the eigenvalues of all matrices in \(D \).
In order to show that \(g(z) \) satisfies (3.3) we first note, from (3.1), that if \(F \) is \(H \)-analytic in a neighborhood of a canonical matrix \(C \), then \(F(C) \) may be written

\[
F(C) = \sum_{i=1}^{k} \sum_{s=0}^{p_i-1} \sum_{t=0}^{p_i-s-1} F(C)_{r_i+r_i+t} E_{r_i+s, r_i+s+t}
\]

where \(r_i = 1 + \sum_{i=1}^{t-1} p_i \) and \(E_{pq} \) is the matrix with a 1 in the \(p, q \) position and zeros elsewhere.

Now, for each \(j, 1 \leq j \leq k \), let

\[
K_{pj} = \begin{pmatrix}
\lambda_j & 1 & 0 & \cdots & 0 \\
\lambda_j + h_j & 1 & \cdot & \cdot & \cdot \\
\lambda_j + 2h_j & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot \\
0 & \cdot & \cdot & \cdot & \lambda_j + (p_j - 1)h_j
\end{pmatrix}
\]

then for all \(h_j \neq 0 \) sufficiently small, \(F \) is \(H \)-analytic at \(K = K_{p_1} + \cdots + K_{p_k} \) (since \(F \) is \(H \)-analytic in a neighborhood of \(C \)).

Let \(Q_j = (q(j)_{rs}) \), \(r, s = 1, \cdots, p_j \), where \(q(j)_{rs} = 0 \) for \(r > s \) and \(q(j)_{rs} = (-1)^{r+s}/(s-r)!h_j^{s-r} \) for \(r \leq s \), then \(Q_j^{-1} = (\tilde{q}(j)_{rs}) \) where \(\tilde{q}(j)_{rs} = 0 \) for \(r > s \) and \(\tilde{q}(j)_{rs} = 1/(s-r)!h_j^{s-r} \) for \(r \leq s \); also

\[
Q_j K_{pj} Q_j^{-1} = D_{pj} = \text{diag}(\lambda_j + (j - 1)h_j), \quad i = 1, \cdots, p_j.
\]

Now, let \(Q = Q_1 + \cdots + Q_k \), then \(QKQ^{-1} = \Lambda = D_{p_1} + \cdots + D_{p_k} \), the canonical form of \(K \). By (i), \(F \) is \(H \)-analytic at \(\Lambda \), and as in (3.4),

\[
F(\Lambda) = \sum_{i=1}^{n} F(\Lambda)_{ii} E_{ii}.
\]

By (i), \(F(K) = Q^{-1} F(\Lambda) Q \), therefore, for \(0 \leq i \leq p_j - 1 \), \(F(K)_{r_j r_j+i} = \sum_{s=0}^{i} q(j)_{r_j s} F(\Lambda)_{r_j s} + q(j)_{r_j t} E_{r_j t+i} \). Thus, by the first part of this proof and the definitions of \(q(j)_{rs} \) and \(\tilde{q}(j)_{rs} \),

\[
F(K)_{r_j r_j+i} = \frac{1}{h_j^i} \sum_{s=0}^{i} \frac{(-1)^{s+t} g(\lambda_j + sh_j)}{s!(i-s)!}
\]

\[
= \frac{1}{h_j^i} \sum_{s=0}^{i} \frac{(-1)^{s+t}}{s!} \binom{i}{s} g(\lambda_j + sh_j) = \frac{\Delta^i g(\lambda_j)}{i! h_j^i}.
\]

Since \(\lim_{h_j \to 0} \Delta^i g(\lambda_j)/h_j^i = g^{(i)}(\lambda_j) \) [6],

\[
\lim_{\sum_{i=1}^{k} h_i \to 0} K = C,
\]
and the F, are analytic and therefore continuous in a neighborhood of the components of C, it follows that

$$F(C)_{rjrj+i} = \lim_{h_j \to 0} F(K)_{rjrj+i} = g^{(i)}(\lambda_j)/i!.$$

Thus (3.3) is proven and hence Theorem 3.1.

It might here be noted that (i) alone is not sufficient for $F(Z)$ to be a primary matric function, as is shown by the function $F(Z) = \sum_{i=1}^{n} F_{ii}E_{ii}$, where $F_{ii} = \sum_{k=1}^{n} z_{kk} = tr(Z)$. The component functions F_{ij} are analytic functions of the z_{rs} of Z and therefore F is H-analytic; also, for $Y = P^{-1}ZP$, $F(Y) = P^{-1}F(Z)P$. However F_{ii} is not a function of only z_{ii} when Z is a diagonal (or upper triangular) matrix which is necessary for a primary matric function.

It might be further noted, since $F(X)$ is diagonal when X is diagonal, that if X is restricted to the algebra \mathcal{D} of $n \times n$ diagonal matrices, then $F(X)$ is also a function on \mathcal{D}. Ringleb [5] gave a necessary and sufficient condition for a function to be H-analytic in an algebra; namely, the (analytic) component functions must satisfy a certain set of linear homogeneous partial differential equations of the first order with constant coefficients which depend only on the structure of the algebra. For the algebra \mathcal{D}, this necessary and sufficient condition for a function $F(T) = \sum_{i=1}^{n} F(T)_{ii}E_{ii}$ to be H-analytic in \mathcal{D} at a matrix $T = \text{diag}(t_{ij})$ is

$$\frac{\partial F(T)_{ii}}{\partial t_{ij}} = 0 \quad \text{for } i \neq j.$$

Thus hypothesis (ii) of Theorem 3.1 could be restated as follows: Let F also be such that, when restricted to the algebra \mathcal{D}, F is H-analytic in \mathcal{D} at any diagonal matrix in \mathcal{D}.

References

Case Institute of Technology

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use