Bibliography

University of Washington and
Harvard University

HAUSDORFF INTERVAL TOPOLOGY ON A PARTIALLY ORDERED SET

YATARÔ MATSUSHIMA

We shall generalize a condition of E. S. Wolk [1] that the interval topology in a partially ordered set be Hausdorff. Let X be a partially ordered set. For each $a \in X$, let $N(a)$ be the set of all elements of X, noncomparable with a. We introduce the definition of an "a-separating set": any subset S of $N(a)$ such that every $x \in N(a)$ is comparable with some $y \in S$.

Theorem. If each $a \in X$ has a finite a-separating set, then X is a Hausdorff space in its interval topology.

Proof. Let $a \neq b$, $a, b \in X$. Let $\{a_i\}_{i=1}^m, \{b_j\}_{j=1}^n$ be an a-separating (b-separating) set; we define for each of the cases the sets A and B; one checks easily in each case that A, B have the stated properties.

(1) The case where a, b are comparable.

(a) Let $a < b$. If there is an element c such that $a < c < b$, then, there exists a c-separating set $\{c_i\}$, so that

$$N(c) \subseteq \sum_{i=1}^m \left(]-\infty, c_i] + [c_i, \infty]\right), \quad \text{where} \quad c_i \in N(c).$$

In this case if we put

$$A = [-\infty, c] + \sum_{i=1}^m [-\infty, c_i], \quad B = [c, \infty] + \sum_{i=1}^m [c_i, \infty],$$

Received by the editors April 17, 1959.
then \(A \) and \(B \) are both closed sets in the interval topology, and furthermore \(b \in A, a \in B \) and \(X = A + B \).

(\(\beta \)) If there is no \(c \) such that \(a < c < b \), we put

\[
A = [-\infty, a] + [a, \infty] \cdot \sum_{j=1}^{s} ([\infty, b_j] + [b_j, \infty]),
\]

\[
B = [b, \infty] + \left(\sum_{i=1}^{r} ([\infty, a_i] + [a_i, \infty]) \right) \cdot \left([-\infty, b] + \sum_{j=1}^{s} ([\infty, b_j] + [b_j, \infty]) \right).
\]

Then we have \(b \in A \) since \(b \in \sum_{j=1}^{s} ([\infty, b_j] + [b_j, \infty]) \). Similarly we have \(a \in B \). Furthermore we have \(X = A + B \). Indeed if \(x \in X - ([\infty, a] + [a, \infty]), \) then we have either \(x > a \) or \(x \in N(a) \). In the first case we have \(x < b \) by the hypothesis, then \(x \in [a, \infty] \cdot N(b) \), that is, \(x \in A \). In the second case \(x \in [b, \infty] \), and hence \(x \in ([\infty, b] + N(b)) \cdot N(a) \), that is, \(x \in B \).

(2) The case where \(b \in N(a) \).

\[
A = [-\infty, a] + [a, \infty], \quad B = \sum_{i=1}^{r} ([\infty, a_i] + [a_i, \infty]),
\]

then we have \(b \in A, a \in B \); \(X = A + B \).

To show that our theorem generalizes Wolk’s result we prove a lemma and give a counter example.

Lemma. If \(X \) contains no infinite diverse subsets, then each \(a \in X \) has a finite \(a \)-separating set.

Proof. For any \(a \in X \) if \(a_1 \in N(a) \), \(N(a) \cap N(a_1) \neq 0 \), then take \(a_2 \in N(a) \cap N(a_1) \). If \(N(a) \cap N(a_1) \cap N(a_2) = 0 \), then we have

\[
N(a) \subset \sum_{i=1}^{3} ([\infty, a_i] + [a_i, \infty])
\]

satisfying our requirements. If \(N(a) \cap N(a_1) \cap N(a_2) \neq 0 \), then we can proceed as above. However the following infinite cases do not occur by the hypothesis:

\[a_i \in N(a) \cap N(a_1) \cap \cdots \cap N(a_{i-1}), N(a) \cap N(a_1) \cap \cdots \cap N(a_i) \neq 0, \quad i=1, 2, \ldots .\]

This completes the proof.

The converse of this lemma is not true.

To show this we give an example of a lattice \(L_0 \) with infinite sets \(\{a_i\}, \{b_j\}, \{c_k\} \) and \(\{d_i\} \) satisfying the following conditions:
(1) $a_i > b_i > c_i > d_i$, all i;
(2) $a_i > a_{i+1} > b_i > c_i > d_{i+1} > d_i$, all i;
(3) $\{b_j\}$ and $\{c_k\}$ consist of pairwise noncomparable elements respectively, all j, k.

Then L_0 contains infinite diverse sets $\{b_j\}$ and $\{c_k\}$, but any element of L_0 satisfies the assumption of Theorem 1. Indeed for instance as regards $N(b_n)$ we have

$$N(b_n) \subset \left[-\infty, a_{n+2} \right] + \sum_{i=1}^{n-1} \left[-\infty, b_i \right],$$

where a_{n+2} and b_i are contained in $N(b_n)$. Similarly we can show the other cases.

Corollary. If a partially ordered set X contains no infinite diverse set, then X is a Hausdorff space in its interval topology (E. S. Wolk, [1]).

Remark. One sees easily that Northam's condition (c) [2, Proposition 7], is equivalent to: every x has a finite x-separating set.

References

Gunma University, Maebashi, Japan