1. In [3], we have shown that in a finite AB-group G in which A and B are cyclic and A is its own normalizer, the commutator subgroup T of G is cyclic and $G = AT$ with $A \cap T = 1$. This result can be used to determine the structure of arbitrary AB-groups in which A and B are cyclic.

If A is a subgroup of a group G, define the subgroup $N^i(A)$ of G inductively by the formula $N^i(A) = N_i(N^{i-1}(A))$, and denote by $N^*(A)$ the upper bound of the subgroups $N^i(A)$. Using this notation, we shall prove the following theorem concerning AB-groups:

Theorem A. Let G be a finite group of the form AB, where A and B are cyclic subgroups of G. Then G contains a unique cyclic normal subgroup T such that $G = N^*(A)T$ and $N^*(A) \cap T = 1$. Moreover, if $N^*(A) = AB^*$ with $B^* \subseteq B$, then B^* and T commute elementwise.

2. We begin with several lemmas:

Lemma 1. Let $G = AB$, with A and B cyclic, and assume that some subgroup B' of B is normal in G. Let $G = G/B' = \overline{A}\overline{B}$, where \overline{A}, \overline{B} are the images of A, B in G. Then $N^*(A)B'$ is the complete inverse image of $N^*(\overline{A})$ in G.

Proof. Let $B_0 \subseteq B'$ with $\sigma(B_0) = p$. Since B' is cyclic, B_0 is normal in G. If $B_0 < B'$, set $G = G/B_0 = \overline{A}\overline{B}$, and let \overline{B}' be the image of B' in G. Since $G = G/B'$, it follows by induction on the order of G that the inverse image of $N^*(\overline{A})$ in G is $N^*(\overline{A})\overline{B}'$. Hence to prove the lemma, it suffices to show that $N^*(\overline{A})^{-1} = N^*(A)B_0$. Thus without loss of generality we may assume $\sigma(B') = p$.

Let $A = (a)$, $B = (b)$ and $B' = (b^*).$ It is clearly sufficient to prove by induction on i that if $b^u \in N^i(\overline{A})^{-1}$, then $b^u \in N^i(A)B'$ for some j. Now for some integer λ with $0 < \lambda < p$, we have

$$ab^*a^{-1} = b^{\lambda}.$$

We treat the cases $\lambda = 1$ and $\lambda > 1$ separately. If $\lambda = 1$, $B' \subseteq N(A)$. Now if $b^u \in N^i(\overline{A})^{-1}$, $b^u \in N^i(\overline{A})$ and hence $b^u(ab^*-u) \subseteq N^{i-1}(\overline{A})$. By induction $b^u(ab^*-u) \subseteq N^i(A)B'$. If $j = 0$, $b^u(ab^*-u) \subseteq N^i(A)$ and consequently $b^u \in N^2(A) = N^2_i(A)B'$. If $j > 0$, $N^i(A)B' = N^i(A)$, and so $b^u \in N^{i+1}(A) = N^{i+1}(A)B'$.
If \(\lambda > 1 \), it follows as above that \(b^u a b^{-u} \in N^i(A)B' \). If \(N^i(A) = AB_j \) and \(B_j = (b^j) \), we have

\[
(2) \quad b^u a b^{-u} = a^\alpha b^{\beta} b^{\gamma}
\]

for suitable integers \(\alpha, \beta, \gamma \).

Since \((\lambda - 1, p) = 1 \), we can find an integer \(\delta \) such that \(\gamma + \delta \lambda \equiv \delta \pmod{p} \). We then have

\[
a^{-1}b^u + r \delta a = (a^{-1}b^u)(a^{-1}b^{r \delta}) = (a^{\alpha-1}b^{\beta+\gamma+u})b^{r \delta} = a^{\alpha-1}b^{\beta}b^{r \delta},
\]

whence \(b^u + r \delta \in N^i(A) \). Thus \(b^u \in N^i(A)B' \), and the lemma is proved.

Lemma 2. Let \(G = AB \), with \(A \) and \(B \) cyclic. Then \(G \) contains a cyclic subgroup \(T \), invariant under \(A \), such that \(G = N^*(A)T \) and \(N^*(A) \cap T = 1 \).

Proof. Either a subgroup of \(A \) or a subgroup of \(B \) is normal in \(G \) (Douglas [1]). Let \(A_1 \) be the maximal subgroup of \(A \) normal in \(G \), and assume first that \(A_1 \neq 1 \). If \(\overline{G} = G/A_1 = A\overline{B} \), we may assume by induction that \(\overline{G} = N^*(\overline{A})\overline{T} \), where \(N^*(\overline{A}) \cap \overline{T} = 1 \), \(\overline{T} \) is cyclic and invariant under \(\overline{A} \). Clearly \(N^*(A) = N^*(\overline{A})^{-1} \). If \(T_0 = T^{-1} \), \(G = N^*(A)T_0 \) where \(N^*(A) \cap T_0 = A_1 \) and \(T_0 \) is \(A \)-invariant.

If we let \(G_0 = AT_0 = AB_0 \) with \(B_0 \subset B \), it follows from our conditions that \(N_{G_0}(A) = A \). The proof of Theorem A of [3] now implies that if \(T = [G_0, G_0] \), then \(T \subset T_0 \), with \(T \) cyclic, \(G_0 = AT \) and \(A \cap T = 1 \). It follows at once that \(G = N^*(A)T \) with \(N^*(A) \cap T = 1 \), \(T \) cyclic and invariant under \(A \).

If \(A_1 = 1 \), we consider a minimal subgroup \(B' \) of \(B \) which is normal in \(G \); and this way we set \(\overline{G} = G/B' = A\overline{B} \). By induction \(\overline{G} = N^*(\overline{A})\overline{T} \), where \(\overline{T} \) is cyclic, \(\overline{A} \)-invariant, and \(N^*(\overline{A}) \cap \overline{T} = 1 \). If \(T_0 = \overline{T}^{-1} \), it follows from Lemma 1 that \(G = N^*(\overline{A})^{-1}T_0 = N^*(A)B'T_0 = N^*(A)T_0 \), where \(N^*(A) \cap T_0 = B' \). Using the notation of Lemma 1, we consider the cases \(\lambda = 1 \) and \(\lambda > 1 \) separately.

If \(\lambda = 1 \), set \(G_0 = AT_0 \) and \(\overline{G}_0 = A\overline{T} \). By Theorem A of [3], \(\overline{T} = [\overline{G}_0, \overline{G}_0] \). Hence we can find a commutator \(t \) in \(T_0 \), which maps on a generator \(\overline{t} \) of \(\overline{T} \). Let \(o(\overline{T}) = m \) and suppose, if possible, that \(t \) has order \(mp \). Since \(o(T_0) = mp \), it follows that \(T_0 = (t) \), and consequently \(T_0 = [G_0, G_0] \). If \(ata^{-1} = t^p \), \([G_0, G_0] = (t^p^{-1}) \), and hence \((\sigma - 1, mp) = 1 \). But \(t^m \in B' \) and, since \(\lambda = 1 \), \(B' \) is in the center of \(G \). Thus \(t^m = at^m a^{-1} = t \sigma \), whence \(p \mid (\sigma - 1) \), a contradiction.

If \((t) = [G_0, G_0] \), we set \(T = (t) \). Since \(o(T) = m \), \(T \cap B' = 1 \). Furthermore \(T \) is normal in \(G_0 \). We conclude at once that \(G = N^*(A)T \), \(N^*(A) \cap T = 1 \), \(T \) cyclic and invariant under \(A \).

On the other hand, if \((t) < [G_0, G_0] \), we must have \(T_0 = [G_0, G_0] \). Since \(G_0 \) is an \(AB \)-group, its commutator subgroup \(T_0 \) is abelian.
Now \(o(T_0) = mp \) and we have just shown that \(T_0 \) contains no commutator of order \(mp \). Therefore \(p \mid m \).

Since \(T_0 \) is normal in \(G_0 \) and is generated by \(t \) and \(b^r \), we have

\[
\tag{3} ata^{-1} = t^\sigma b^r \beta
\]

for suitable \(\sigma, \beta \).

It follows that \(\langle \bar{b}^{-1} \rangle = \langle \bar{G}_0, \bar{G}_0 \rangle \) and hence that \((\sigma - 1, m) = 1 \). Since \(p \mid m \), there exists an integer \(\alpha \) such that \(\beta + \alpha = \sigma \alpha \) (mod \(p \)). Consequently \(a(tb^r) a^{-1} = t^\sigma b^\beta b^\alpha = t^\sigma b^{r+\alpha} = (tb^r)^\sigma \). It follows that the subgroup \(T = \langle tb^r \rangle \) is invariant under \(A \). Since \(o(T) = m \), \(T \cap B' = 1 \), and we conclude at once that \(G = N^*(A) \cup T, \) \(N^*(A) \cap T = 1 \), \(T \) cyclic and invariant under \(A \).

If \(\lambda > 1 \), we set \(P = \langle G_0, G_0 \rangle \). Since \(PCP \), \(A \ast (\mathcal{A}) \cap P' = CP \). Suppose, if possible, that \(B' \subset N^d(A) \), let \(d \) be the least integer such that \(B' \subset N^d(A) \). By definition of \(N^d(A) \), \(b^{r-1}b^{-r} \in N^{d-1}(A) \), and hence \(ab^{r-1}b^{-r} = b^{(\lambda - 1)} \in N^{d-1}(A) \). Since \((\lambda - 1, p) = 1 \), it follows that \(b^r \in N^{d-1}(A) \), a contradiction. Thus \(B' \cap N^*(A) = 1 \), and consequently \(N^*(A) \cap T = 1 \). On the other hand, by Theorem A of [3], \(T \) is cyclic and \(G_0 = AB \). We conclude that in all cases \(G \) contains a cyclic subgroup \(T \), invariant under \(A \), such that \(G = N^*(A) \cup T \) and \(N^*(A) \cap T = 1 \).

Lemma 3. Let \(G = AB = N^*(A) \cup T \) with \(N^*(A) \cap T = 1 \), where \(T \) is cyclic and \(A \)-invariant and assume that \(A \cap B = 1 \). If \(N^*(A) = AB^* \) and \(AT = AB_0 \) with \(B^*, B_0 \subset B \), then \((o(B^*), o(B_0)) = 1 \), \(B = B^* \times B_0 \), and \(o(T) = o(B_0) \).

Proof. \(G = N^*(A) \cup T = (AB^*) \cup T = (AB^*)(AT) = (AB^*)(AB_0) = A(B^*B_0) \). Since \(A \cap B = 1 \), it follows that \(B = B^*B_0 \). On the other hand, \(N^*(A) \cap T = 1 \), \(N^*(A) \cap AT = A \), and hence \(N^*(A) \cap B_0 \subset A \cap B_0 = 1 \). Thus \(B^* \cap B_0 = 1 \), whence \(B = B^* \times B_0 \). Since \(B^* \) and \(B_0 \) are subgroups of the cyclic group \(B \), it also follows that \((o(B^*), o(B_0)) = 1 \).

Finally let \(T = \langle t \rangle \), where \(t = a^rb^r \) and let \(o(T) = m \). Since \(AT = AB_0 \), it follows as in the proof of Theorem 10 of [2] that \(T \) consists of the elements \(a^{qrb^r} \), and since \(A \cap B = 1 \), these elements must be distinct for \(j = 1, 2, \ldots, m \) and \(a^{nmrb^r} = 1 \). Hence \(b^{rm} = 1 \) and so \(o(B_0) \mid m \). On the other hand, if \(o(B_0) = n < m \), \(a^{nmrb^r} = a^{nm} \in A \cap T = 1 \), whence \(a^{nmrb^r} = a^{nmrb^r} \), a contradiction. Thus \(o(B_0) = o(T) \), as asserted.

Lemma 4. \(T \) is uniquely determined by the conditions \(G = AB = N^*(A) \cup T \) with \(N^*(A) \cap T = 1 \), \(T \) cyclic and \(A \)-invariant.

Proof. Suppose \(T, T' \) are two subgroups of \(G \) satisfying the conditions of the lemma. Let \(G_0 = AT \) and \(G_0' = AT' \). Since \(A \cap T = 1 \),
\(N_{\alpha}(A) = A \), whence by Theorem A of [3], \(T = [G_0, G_0] \), and similarly \(T' = [G'_0, G'_0] \). Hence to prove the lemma, it clearly suffices to show that \(G_0 = G'_0 \).

If \(A \cap B \neq 1 \), the equality of \(G_0 \) and \(G'_0 \) follows readily by induction by considering \(G = G/A \cap B \); hence without loss of generality we may assume that \(A \cap B = 1 \). If \(G_0 = AB_0 \) and \(G'_0 = AB'_0 \), it follows from Lemma 3 that \(B = B^* \times B_0 \) and \(B = B^* \times B'_0 \). Hence \(o(B_0) = o(B'_0) \). But \(B \), being cyclic, has a unique subgroup of any given order. Thus \(B_0 = B'_0 \) and \(G_0 = G'_0 \).

3. Proof of Theorem A. In view of Lemmas 2 and 4 it suffices to prove that \(T \) commutes elementwise with \(B^* \), for this will clearly imply that \(T \) is normal in \(G \). In this section we treat the case \(A \cap B = 1 \).

Let \(d \) be the least integer such that \(N_{d+1}(A) = N^d(A) \), so that \(N^*(A) = N^d(A) \). Let \(N_i(A) = AB_i \) with \(B_i = (b^r) \subset B \), \(i = 1, 2, \ldots, d \). Then \(B_1 < B_2 < \cdots < B_d \) and \(B_d = B^* \). We may assume \(r_i | r_{i-1} \), \(i = 2, 3, \ldots, d \). \(N_{i-1}(A) \) is normal in \(N_i(A) \) since \(N_{i-1}(A) = N_i(N_{i-1}(A)) \). Furthermore let \(G_0 = AT = AB_0 \) with \(B_0 = (b^r) \subset B \) and \(o(B_0) = m \). Then \(T = (t) \), where \(t = a^{s}b^r \) for some integer \(s \).

If \(s = 0 \), \(T = B_0 \), and it is obvious that \(T \) and \(B^* \) commute elementwise. Hence we may suppose \(s \neq 0 \) and without loss of generality that \(s | h \), where \(h = o(A) \). First of all, if \(h < sm \), \(a^{h}b^{h}s = b^{h}s \in T \), and generates a subgroup \(T_0 \), which is clearly invariant under \(B \) and hence is normal in \(G \). It follows at once by considering \(G/T_0 \) and using induction on the order of \(G \), that

\[
(t) b^{r}a^{t}b^{-r} = t b^{r(h/s)\beta}
\]

for some integer \(\beta \).

If \(n \) denotes the order of \(B^* \), we conclude at once from (4) that

\[
t = b^{r}a^{t}b^{-r} = b^{r(h/s)\beta n},
\]

whence

\[
(5) \quad r(h/s)\beta n \equiv 0 \pmod{m}.
\]

Since \((n, m) = 1 \) by Lemma 3,

\[
r(h/s)\beta \equiv 0 \pmod{m} \quad \text{and} \quad b^{r}a^{t}b^{-r} = t, \text{as desired.}
\]

We may therefore assume that \(h = sm \). For \(i = 1, 2, \ldots, d \) we have

\[
(6) \quad b^{r}a^{t}b^{-r} = a^{u_{i-1}}b^{r_{i-1}+r_{i-1}^{-1}} \quad \text{for suitable integers} \ u_{i-1}, v_{i-1}, \text{where} \ r_{0} = 0.
\]

Let \(G'_i \) be the commutator subgroup of \(G_i = N_i(A)T \). We know that \(T = (t) \) is the commutator subgroup of \(G_0 = AT \). Since \(N_{i-1}(A) \) is normal in \(N_{i}(A) \), and \(G_i = N_i(A)B_0 \), \(G_{i-1} \) is normal in \(G_i \). It follows readily by induction that \(G'_i \) is generated by the elements \(a^{u_{i-1}}, \)
$a^{u_i-1}b^{r_i}v_i, \ldots, a^{u_i-1}b^{r_i}v_i-1, t$. Furthermore G'_i is abelian since G_i is an AB-group for each i.

To prove that B^* and T commute elementwise, we have only to show that $b^{r_i}t b^{-r_i} = t$ on the assumption that $b^{r_i}t b^{-r_i} = t$. Now from the form of G'_i, we have

(7) $b^{r_i}t b^{-r_i} = xt^r$ where $x \in N^{i-1}(A)$ and $xt = tx$.

Since by assumption $A \cap B = 1$, Lemma 3 implies $o(T) = o(B_0)$, whence $t^n = 1$. It follows now from (7) that $x^n = 1$. Suppose for some $j > 1$, $x \in N^j(A)$, $x \notin N^{j-1}(A)$. Let β be the least integer such that $x^\beta \in N^{j-1}(A)$. Since $N^{j-1}(A)$ is normal in $N^j(A)$, $\beta \mid [N^j(A) : N^{j-1}(A)]$ and hence $\beta \mid o(B^*) = n$. But clearly $\beta \mid m$ since $x^n = 1$. Since $(n, m) = 1$, $\beta = 1$ and so $x \in N^{n-1}(A)$, a contradiction. Thus $x \in A$ and (7) takes the form

(8) $b^{r_i}t b^{-r_i} = a^\sigma t^\sigma, \quad a^\sigma t = t a^\sigma$.

Now $t = a^s b^r$ and $t^\gamma = a^s b^s \sigma$ for some integer σ, whence $b^{r_i} a^s b^{-r_i} = a^{s + \sigma r} b^{(r-1)s}$. But this implies $b^{(r-1)s} \in N^{n-1}(A) \cap B_0 = 1$, so that $\sigma \equiv 1 \pmod{m}$. Since $a^m = 1$, we may assume $\sigma = \gamma = 1$, and hence that

(9) $b^{r_i} a^s b^{-r_i} = a^{s+1}, \quad b^{r_i} t b^{-r_i} = a^s t$.

In particular, (9) implies that $s \mid \rho$.

Since T is normal in AT, we have finally

(10) $a t a^{-1} = t^\lambda$ for some integer λ.

In view of (6)

(11) $(b^{r_i} a) t (b^{r_i} a)^{-1} = (a^{u_i-1} b^{r_i} v_i-1 t v_i-1)(a^{u_i-1} b^{r_i} v_i-1 t v_i-1)^{-1}$.

Using (9) and (10) and our assumption that b^{r_i} commutes with t, we conclude readily from (11) that

(12) $a^s t^\lambda = a^s t^{s+1}$.

Since $A \cap T = 1$, $\rho (\lambda - 1) \equiv 0 \pmod{h}$. Since $h = ms$ and $s \mid \rho$, we obtain

(13) $\frac{\rho}{s} (\lambda - 1) \equiv 0 \pmod{m}$.

But T is the commutator subgroup of AT, which implies $(\lambda - 1, m) = 1$; and it follows from (13) that $\rho \equiv 0 \pmod{h}$. Hence $b^{r_i} t b^{-r_i} = t$, as desired. We conclude that B^* and T commute elementwise.

4. Finally we treat the case $A \cap B \neq 1$. Let $\bar{G} = G/A \cap B = \bar{A} \bar{B}$
\[N^*(\overline{A}) \overline{T}, \text{ where } \overline{A}, \overline{B}, \overline{T} \text{ are the images of } A, B, T, \text{ in } \overline{G}. \] Clearly \(\overline{T} \) is cyclic, invariant under \(\overline{A} \), and \(N^*(\overline{A}) \cap \overline{T} = 1 \). If \(N^*(\overline{A}) = \overline{AB}^* \) with \(\overline{B}^* \subseteq \overline{B} \), let \(n = o(\overline{B}^*) \); and let \(m = o(\overline{T}) \). Since \(A \cap B = 1 \), it follows from the preceding section that \((n, m) = 1 \) and that \(\overline{B}^* \) commutes elementwise with \(\overline{T} \). Furthermore \(N^*(\overline{A})^{-1} = N^*(A)(A \cap B) = N^*(A) \), and hence \(B^* \) is the inverse image of \(\overline{B}^* \) in \(G \). If \(B^* = (b^d) \), it follows that

\[b^xtb^{-td} = xt, \quad x \in A \cap B, \quad \text{and} \quad b^{ran} \in A \cap B. \]

Since \(A \cap B \) is in the center of \(G \), \(x^n = 1 \). On the other hand \((14) \) yields \(t = b^{ran}tb^{-ran} = x^n t \), whence \(x^n = 1 \). Since \((n, m) = 1 \), we conclude that \(x = 1 \); and the theorem is proved.

Bibliography

Clark University and
Cornell University