of \(z \) and each \(S_j \) is even. Let \(s \) be the number of points of the orbit and \(q \) any index in \(Q \). For \(r < s \), \((hz)^r(\phi, q)\) differs from \((\phi, q)\) in the first coordinate; but \((hz)^s(\phi, q) = (\phi, q)\). Thus every element of \(G \) has an odd cycle. As we noted above, this implies \([1]\) the existence of a fair game of \(2^k(2^l - 1) \) players.

References

University of Washington

ON INDUCED TOPOLOGIES IN QUASI-REFLEXIVE BANACH SPACES

LARRY C. HUNTER

1. **Introduction.** Let \(\pi \) denote the canonical isomorphism of a Banach space \(X \) into its second conjugate space \(X^{**} \). An example is given by James \([4]\) of a space \(X \) for which \(X \) is separable, \(X \) is not reflexive, \(X \) is isomorphic to \(X^{**} \), and \(X^{**}/\pi(X) \) is one-dimensional. Civin and Yood undertook a more complete investigation of Banach spaces \(X \) such that \(X^{**}/\pi(X) \) is (finite) \(n \)-dimensional and called such spaces quasi-reflexive Banach spaces of order \(n \). If \(Q \) is a subset of \(X^* \), let \(\sigma(X, Q) \) denote the least fine topology for \(X \) such that all \(x^* \in Q \) are continuous. In \([1]\) Civin and Yood establish the following result.

Theorem A. The following statements are equivalent:

1. \(X \) is quasi-reflexive of order \(n \).
2. There is an equivalent norm for \(X \) such that \(X^* = Q \oplus R \) where \(Q \) is a total closed linear manifold such that the unit ball of \(X \) is compact in \(\sigma(X, Q) \) and \(R \) is an \(n \)-dimensional linear manifold.

It is the purpose of this paper to study properties of the topologies \(\sigma(X, Q) \), where \(X^* = Q \oplus R \), \(Q \) is a total closed linear manifold, and

Received by the editors December 26, 1958 and, in revised form, May 18, 1959.

1 This paper contains part of a doctoral dissertation written at the University of Oregon under the direction of Paul Civin and was supported in part by the National Science Foundation research grant NSF-G2573.
R is n-dimensional. It is shown that $\sigma(X, Q)$ is nothing more than the w^*-topology on X when X is considered as the conjugate space of Q.

2. Notation. Let X be a Banach space. Let π be the canonical isomorphism of X into X^{**}, its second conjugate space. For a subset A of X, A^+ will designate the annihilator of A in X^*, and A^{++} the annihilator of A^+ in X^{**}. For a set B in X^*, B^- will denote the annihilator of B in X. When we write $X = C \oplus D$, we shall mean that C and D are closed linear manifolds of X, that X is the linear span of C and D, and $C \cap D = 0$. We define $S_r = \{ x \in X : \|x\| \leq r \}$.

3. Preliminary results. If X is a quasi-reflexive Banach space of order n, then $X^{**} = \pi(X) \oplus L$ where L is an n-dimensional linear manifold. Civin and Yood note that $X^* = Q \oplus R$ where $Q = L^*$ is total and R is n-dimensional. In the proof of Theorem A, they show that for $Q = L^*$ there is an equivalent norm for X such that the unit ball of X is compact in $\sigma(X, Q)$.

The following question can then be posed. If X is a quasi-reflexive space of order n and $X^* = Q_0 \oplus R_0$ where Q_0 is total and R_0 is n-dimensional, is there an equivalent norm for X in which the unit ball is compact in $\sigma(X, Q_0)$? The following theorem shows that all decompositions of X^* of the above type arise from considering the annihilators of the n-dimensional pieces of the second conjugate space of X.

3.1. Theorem. If X is a quasi-reflexive Banach space of order n and if $X^* = Q_0 \oplus S_0$ where Q_0 is total and S_0 is n-dimensional, then:

(i) $X^{**} = \pi(X) \oplus Q_0^+$,
(ii) there is an equivalent norm for X such that the unit ball of X is compact in $\sigma(X, Q_0)$,
(iii) $\|x\| = \sup_{x^* \in Q_0, \|x^*\| = 1} |x^*(x)|$ if X has the norm for which the unit ball is compact in $\sigma(X, Q)$.

Proof. (i) Suppose that $x^{**} \in \pi(X) \cap Q_0^+$. Then $x^{**} = \pi(x)$ for some $x \in X$ and for all $y^* \in Q_0$, $x^{**}(y^*) = y^*(x) = 0$. Since Q_0 is total, $x = 0$, and hence $\pi(X) \cap Q_0^+ = 0$. Since $X^{**}/\pi(X)$ has dimension n, it follows that Q_0^+ has dimension $r \leq n$. Let $x_1^{**}, x_2^{**}, \ldots, x_r^{**}$ be a basis for Q_0^+ and select $x_1^*, x_2^*, \ldots, x_r^* \in X^*$ such that $x_i^{**}(x_j^*) = \delta_{ij}$, $i, j = 1, 2, \ldots, r$. Let R be the subspace of X^* generated by x_1^*, \ldots, x_r^*. It is easily seen that $X^* = Q_0 \oplus R$ and thus X^*/Q_0 has dimension r. But $X^* = Q_0 \oplus S_0$ where S_0 is n-dimensional, so X^*/Q_0 has dimension n. Hence $r = n$.
(ii) Since $X^{**} = \pi(X) \oplus Q_0^+$, the result follows immediately from the proof of Theorem A.

(iii) This follows immediately from Theorem 7 of [3].

In view of 3.1, we adopt the following convention. When we say that X is a quasi-reflexive Banach space, $X^* = Q \oplus R$ where Q is total and R is n-dimensional, we shall always mean that X is to be considered in its equivalent norm so that its unit ball is compact in $\sigma(X, Q)$.

4. Induced topologies. In this section the topologies induced on X by the decompositions $X^* = Q \oplus R$, Q total, R n-dimensional, are characterized as w^*-topologies.

4.1. Theorem. If X is a quasi-reflexive Banach space, $X^* = Q \oplus R$ where Q is total and R is n-dimensional, then X is equivalent to Q^* under the mapping $v: X \rightarrow Q^*$ defined by $v(x)(x^*) = x^*(x)$, all $x^* \in Q$.

Proof. $v(x)$ is the contraction of $\pi(x)$ to Q. This is linear and 1-1, since Q is total. By Theorem 9 of [2], $\pi(x)$ and its contraction to Q have the same norm.

Hence $\sigma(X, Q)$ is merely the w^*-topology on X when X is considered as the conjugate space of Q and properties which hold for general conjugate spaces thus hold for quasi-reflexive Banach spaces.

Bibliography

Sylvania Electric Products, Inc., Mt. View, California