The existence of widely connected and biconnected semigroups

Author:
Paul M. Swingle

Journal:
Proc. Amer. Math. Soc. **11** (1960), 243-248

MSC:
Primary 22.05

DOI:
https://doi.org/10.1090/S0002-9939-1960-0113970-0

MathSciNet review:
0113970

Full-text PDF

References | Similar Articles | Additional Information

**[1]**B. Knaster and C. Kuratowski,*Sur les ensembles connexes*, Fund. Math. vol. 2 (1921) pp. 206-253.**[2]**R. J. Koch,*Arcs in partially ordered spaces*, to appear.**[3]**R. J. Koch and A. D. Wallace,*Maximal ideals in compact semigroups*, Duke Math. J. vol. 21 (1954) pp. 681-685.**[4]**R. L. Moore,*Foundations of point set theory*, Amer. Math. Soc. Colloquium Publications, vol. 13, 1932.**[5]**P. M. Swingle,*Two types of connected sets*, Bull. Amer. Math. Soc. vol. 37 (1931) pp. 254-258.**[6]**-,*Widely connected and biconnected semigroups*, Proc. Amer. Math. Soc. vol. 11 (1960) pp. 249-254.**[7]**Summer Institute on Set Theoretic Topology, Madison, 1955.**[8]**A. D. Wallace and R. J. Koch,*Notes on mobs*, mimeographed, 1956, Tulane University.**[9]**A. D. Wallace,*The structures of topological semigroups*, Bull. Amer. Math. Soc. vol. 61 (1955) pp. 95-112.**[10]**-,*Indecomposable semigroups*, Math. J. Okayama Univ. vol. 3 (1953) pp. 1-3.**[11]**R. L. Wilder,*Topology of manifolds*, Amer. Math. Soc. Colloquium Publications, vol. 32, 1948.

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
22.05

Retrieve articles in all journals with MSC: 22.05

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1960-0113970-0

Article copyright:
© Copyright 1960
American Mathematical Society