HOMOGENEOUS GAMES. II

J. R. ISBELL

Introduction. This paper describes strong simple homogeneous \(n \)-player games for several values of \(n \) of the form \(2^k(2^l-1) \), \(l > k \); specifically, for the (Mersenne) primes \(2^l-1 \) and for the first two composite values, 15, 63 (for any \(k < l \)). The problem of the existence of such a game remains open for \(n = 20, 24, 40, \ldots \).

Let us call the games fair games for short. Heuristically, a fair game of \(n \) players is a rule for deciding disputed binary questions without giving any one player an advantage—for example, majority rule, if \(n \) is odd. Arrow's theorem on the nonexistence of a social welfare function [2] asserts in effect that for questions which are more than binary, no fair complete rule is possible.

Precisely, a fair game on a set \(N \) of players is a family of subsets of \(N \), called winning sets, such that (a) every set containing a winning set is winning, (b) the complement of a winning set is not winning, (c) the complement of a nonwinning set is winning, and (d) the group of all permutations of \(N \) which take winning sets to winning sets is transitive.

The problem of constructing a fair game reduces at once [1, Lemma 1] to the problem of constructing its group: a transitive group of permutations, every element of which has at least one odd cycle. We recall from [1] that the class of all \(n \) for which a fair \(n \)-player game exists is closed under multiplication and contains the odd \(n \) and the \(n = 2 \) (mod 4), except 2. Impossibility is known only for \(n \) a power of 2 (except 1) and \(n = 12 \).

1. The construction utilizes the finite projective space \(P = PG(2, l-1) \) over the two-element field. Observe that \(P \) has a collineation permuting its \(2^l-1 \) points cyclically [3, pp. 384–385].

Lemma. If \(2^l-1 \) is prime, 15, or 63, then \(PG(2, l-1) \) admits a transitive collineation group \(Z \) of odd order such that for any \(z \) in \(Z \) and any \(l-1 \) hyperplanes \(H_i \) in \(P \), there is \(p \in P \) such that the number of points common to the orbit of \(p \) under powers of \(z \) and \(H_i \), for each \(i \), is odd.

Proof. Let \(Z \) be a cyclic collineation group as in [3]. Specifically, for \(l=4 \) and \(l=6 \), we take \(x^4+x+1 \) and \(x^6+x+1 \) as the irreducible polynomials in Singer's construction.

Received by the editors May 25, 1959.
If \(z \) is a generator of \(Z \), the orbit of any \(p \) is all of \(P \) and the intersection with every hyperplane is odd. If \(z \) is the identity, choose \(p \) common to all \(H_i \). For primes \(2^l-1 \), there is no other case. For the case \(l=4 \), computation shows that the exceptional orbits are (a) lines (3 points) and (b) skew pentagons \(V \) such that every plane containing two points of \(V \) contains exactly three points of \(V \). Each kind of orbit has odd intersection with every plane. The same thing happens for \(l=6 \); all exceptional orbits are unions of odd numbers of (a) lines or (b) planes. This establishes the lemma.

I do not know whether the lemma remains valid for \(PG(2, 7) \) or for other spaces of composite order.

2. For any \(l \) satisfying the conditions of the lemma, for any \(k<l \), we construct first a group \(H \) of functions on \(P = PG(2, l-1) \) which may be described as the direct sum of \(k \) copies of the group of complements of hyperplanes. Precisely, let \(S_0 \) denote the empty set, and \(S_1, \ldots, S_m \) \((m=2^l-1) \) the complements of hyperplanes in \(P \). The sets \(S_i \) form a group under symmetric difference, since the symmetric difference of the complements of two hyperplanes intersecting in an \((l-3)\)-subspace \(T \) is the complement of the third hyperplane through \(T \). Let \(K \) be the direct sum of \(k \) copies of \(Z_2 \), with generators \(a_1, \ldots, a_k \). In the group \(K^P \) of all functions on \(P \) to \(K \), let \(f_{ij} \) \((i=1, \ldots, k; j=0, \ldots, m) \) denote the function which takes the value \(a_i \) on \(S_j \) and 0 on its complement. (All \(f_{i0} \) vanish.) Let \(H \) be the subgroup generated by these functions. Then every element of \(H \) has the form \(\sum f_{ij}(a_i) \); for these functions include the generators \(f_{ij} \) and are closed under addition. (The group is commutative, and \(f_{ir} + f_{is} = f_{ir} \) for suitable \(t \).)

Next let \(Q \) be an index set of \(2^k \) elements and select a transitive action of \(K \) on \(Q \). (For example, let \(Q \) be a product of \(k \) two-element sets and let \(a_i \) operate by changing every \(i \)th coordinate.) On the product set \(P \times Q \), of \(2^km \) elements, we define an action of \(H \) by \(h(p, q) = (p, h(p)(q)) \). Let \(Z \) be a group acting on \(P \) as in the lemma, and let \(Z \) act on \(P \times Q \) by \(z(p, q) = (z(p), q) \). Let \(G \) be the least group of permutations of \(P \times Q \) containing \(H \) and \(Z \).

Since the group of functions \(H \) is invariant under collineations of \(P \), \(Z \) is contained in the normalizer of \(H \) and every element of \(G \) can be written (uniquely) in the form \(hz \). Explicitly, \(hz(p, q) = (z(p), h(z(p))(q)) \), and \((hz)^*(p, q) = (z^*(p), \sum h(z^*(p)))(q) \). Now the order of \(z \) is an odd number, and every cycle of \(z \) is odd. As for \(h \), it is a sum of \(k \) or fewer functions \(f_{ij} \); by the lemma, there is \(p \) in \(P \) such that the number of points common to the orbit of \(p \) under powers
of z and each S_j is even. Let s be the number of points of the orbit and q any index in Q. For $r < s$, $(hz)^r(\phi, q)$ differs from (ϕ, q) in the first coordinate; but $(hz)^s(\phi, q) = (\phi, q)$. Thus every element of G has an odd cycle. As we noted above, this implies [1] the existence of a fair game of $2^s(2^r - 1)$ players.

References

University of Washington

ON INDUCED TOPOLOGIES IN QUASI-REFLEXIVE BANACH SPACES

LARRY C. HUNTER

1. Introduction. Let π denote the canonical isomorphism of a Banach space X into its second conjugate space X^{**}. An example is given by James [4] of a space X for which X is separable, X is not reflexive, X is isomorphic to X^{**}, and $X^{**}/\pi(X)$ is one-dimensional. Civin and Yood undertook a more complete investigation of Banach spaces X such that $X^{**}/\pi(X)$ is (finite) n-dimensional and called such spaces quasi-reflexive Banach spaces of order n. If Q is a subset of X^*, let $\sigma(X, Q)$ denote the least fine topology for X such that all $x^* \in Q$ are continuous. In [1] Civin and Yood establish the following result.

Theorem A. The following statements are equivalent:

1. X is quasi-reflexive of order n.
2. There is an equivalent norm for X such that $X^* = Q \oplus R$ where Q is a total closed linear manifold such that the unit ball of X is compact in $\sigma(X, Q)$ and R is an n-dimensional linear manifold.

It is the purpose of this paper to study properties of the topologies $\sigma(X, Q)$, where $X^* = Q \oplus R$, Q is a total closed linear manifold, and

Received by the editors December 26, 1958 and, in revised form, May 18, 1959.

1 This paper contains part of a doctoral dissertation written at the University of Oregon under the direction of Paul Civin and was supported in part by the National Science Foundation research grant NSF-G2573.