COMPLETE IDEALS IN LOCAL RINGS

H. T. MUILY

1. Let L be a noetherian local ring with maximal ideal M. To each ideal H of L there corresponds an ideal H_a, the integral closure or v-completion of H, which consists of those elements x in L that depend integrally upon H in the sense that an equation, $x^n + a_1x^{n-1} + \cdots + a_n = 0$, in which $a_i \in H^i$, $i = 1, 2, \ldots, n$, holds. Any ideal H such that $H_a = H$ is called a v-complete ideal. It is well known [3] that $(H_a)_a = H_a$ for all ideals H. In this note we study the sequence \{ $(Q_n)_a = (M^n)_a$ \} of the v-completions of the powers of the maximal ideal M in the case where L is a two dimensional local domain that is integrally closed in its quotient field F. Subject to certain finiteness restrictions explained below it is shown that there is an ideal X generated by a set of parameters and an integer s such that for each positive integer t, $Q_{s+t} = Q_sX^t$. By means of this result it is shown that the length $\lambda(Q_n)$ of the M-primary ideal Q_n is given by a polynomial in n when n is large. Finally, it is shown that if L is the local ring at a point P of a normal algebraic surface \mathcal{V}, if \mathcal{U} is the transform of \mathcal{V} defined by a quadratic transformation with center P, and if \mathcal{U}_s is a derived normal model of \mathcal{U} associated with the character of homogeneity δ, then $\chi(\mathcal{V}, 2n\delta) - \chi(\mathcal{U}_s, n) = \lambda(Q_n)$, where χ is the Hilbert characteristic function. In particular, the constant term of the polynomial $\lambda(Q_n)$ measures the change in the relative arithmetic genus of \mathcal{U} that is induced by the quadratic transformation.

Some of the ideas and techniques used below are related to those employed by Rees in his study of pseudo-valuations [6, and related papers]. They go back ultimately, however, to Zariski’s work on the reduction of singularities.

The author expresses his thanks to the referee for several helpful suggestions.

2. A subset S of an ideal H in a noetherian local ring (L, M) will be called an a-basis of H in case $H_a = (LS)_a$. The ideal LS is then a reduction of H in the sense of Northcott-Rees who have shown [5] that if $\{x_1, x_2, \ldots, x_r\}$ is a minimal a-basis of the ideal M, then the number r of the elements x_i is equal to the dimension of L, and

Presented to the Society, November 23, 1956 under the title On the relative arithmetic genus of a normal surface; received by the editors August 10, 1959.

1 Work on this paper was supported in part by a grant from the National Science Foundation.
these elements are analytically independent. If L is a domain integrally closed in its quotient field F and if Ω is the set of valuations v of F such that R_v, the valuation ring of v, is an overring of L, and if $H_b = \{ x; v(x) \geq v(H), \forall v \in \Omega \}$, then $H_b = H_a$ [3; 7]. (Here $v(H)$ denotes $\min \{ v(a); a \in H \}$.) Moreover, for each $v \in \Omega$ there is at least one i such that $v(x_i) = v(M)$, so that $v(x_i^n) = v(M^n)$ for all integers $n \geq 0$. Hence if $X = \sum (Lx_i)$ is the ideal generated by the minimal a-basis $\{ x_1, x_2, \ldots , x_r \}$, then $v(X^n) = v(M^n)$, and $Q_n = (X^n)_b$.

Let $L_i = L[x_i/x_i, x_2/x_i, \ldots , x_r/x_i]$, and let T_i be the integral closure of L_i in F. Since the condition, $v(x_i) = v(M)$, implies that $R_v \supseteq L_i$ it follows that $T_i = \cap \{ R_v; v \in \Omega, v(x_i) = v(M) \}$, and $L = \cap T_i$. If $x \in Q_n$, then x satisfies an equation, $x^t + a_1 x^{t-1} + \cdots + a_t = 0$, $a_i \in X_i^n$, so that $x/x_i^n \in T_j$, $j = 1, 2, \ldots , r$, and hence $Q_n \subseteq x_i^n T_j \cap L$. The minimal property of the a-basis $\{ x_1, x_2, \ldots , x_r \}$ assures us that x_i is not a unit in T_j, and since T_j is integral over L_j there exists at least one real discrete valuation v such that $R_v \supseteq T_j$ and $v(x_i) > 0$. Hence no element different from zero in T_j is divisible by all powers of x_i so that we have

$$\bigcap_{n=1}^{\infty} Q_n = (0).$$

We now assume that L is complete and that its characteristic coincides with that of its residue field. By a theorem of Cohen [2], L then contains a coefficient field k, and the power series ring

$$P = k\{ x_1, x_2, \ldots , x_r \}$$

is a subring of L over which L is a finite module. If

$$P_j = P[x_1/x_j, x_2/x_j, \ldots , x_r/x_j],$$

then T_j is integral over P_j and the relation between the rings P and P_j is similar to the relation between L and T_j. If $X_0 = \sum P x_i$, and if $\theta \in X_0^n$, then $\theta/x_j^n \in P_j$. On the other hand if $\pi \in P_j$ then π is a polynomial in the quotients x_i/x_j so that if n is its total degree, $x_j^n \pi$ is a form of degree n in x_1, x_2, \ldots , x_r with coefficients in P. Thus $x_j^n \pi \in X_0^n$. Moreover, since P is a regular local ring the equation, $X_0^n \cdot (x_j^n) = X_0^n x_j^{-1}$, holds for all $n \geq t$, so that if e is the least integer such that $x_j^n \pi \in P$, then $x_j^n \pi \in X_0^n$. This integer e will be called the degree of π. If y is an element of the quotient field of P that is integral over P_j, there is an integer e such that $x_j^e y \in (X_0^n)_b$. In fact, if a_i is the coefficient of y^{t-i} in the equation of integral dependence and if e_i is the degree of a_i, we can take e to be the least integer f such that
However, the regularity of P implies that the pseudo-valuation associated with the sequence of powers of X_0 is a valuation and that X_0^n is a complete ideal for all positive integers n. Hence $x_0^ny \in X_0^n$ and $y \in P_j$. Thus P_j is integrally closed.

Lemma 1. If $\theta \in Q_n$ and if $g(Z) = Z^t + a_t Z^{t-1} + \cdots + a_1$ is the minimal polynomial for θ over the quotient field E of P, then $a_i \in X_0^n$.

Proof. As mentioned above, $\theta/x_0^n \in T_j$ and hence θ/x_0^n is integral over P_j. If $h(Z) = Z^t + b_t Z^{t-1} + \cdots + b_1$ is the minimal polynomial of θ/x_0^n over E, then by a well known lemma of Kronecker [3], $b_i \in P_j$, $i = 1, 2, \cdots, t$. For the same reason, $a_i \in P$. Hence since $a_i = b_i x_0^n$, it follows that $a_i \in X_0^n$, q.e.d.

Lemma 2. If $\theta \in T_j$ then there exist integers s such that $x_0^s \theta \in L$. For any such integer s it is true that $x_0^s \theta \in Q_s$. Moreover, for all positive integers n, $x_0^s T_j \cap L = Q_n$.

Proof. As above, the coefficients a_i of the minimal polynomial $g(Z)$ of θ are in P_j, so that if d_i is the degree of a_i and s is an integer such that $si \geq d_i$, $i = 1, 2, \cdots, t$ then the minimal equation of $x_0^s \theta$ has coefficients $x_0^s a_i$ in P, so that $x_0^s \theta \in L$. On the other hand if s is such that $x_0^s \theta \in L$, then $x_0^s a_i \in P$ and hence $x_0^s a_i \in X_0^n$. Thus $x_0^s \theta$ depends integrally on X^n so that $x_0^s \theta \in Q_s$. In particular, for any positive integer n the inclusion, $x_0^s T_j \cap L \subseteq Q_n$, holds, and this establishes equality since the opposite inclusion has already been noted, q.e.d.

Proposition 1. Let (L, M) be an integrally closed local domain of the same characteristic as its residue field which is such that its completion $(\overline{L}, \overline{M})$ is also an integrally closed domain. Let k be a coefficient field of L and let $k = k \cap L$. If $\phi(Z_1, Z_2, \cdots, Z_t)$ is a nonzero form of degree s in the indeterminates Z with coefficients in k, then for each positive integer $n \geq s$, the equality,

$$Q_n: (\phi(x_1, x_2, \cdots, x_t)) = Q_{n-s},$$

holds.

Proof. If $\overline{Q}_n = (\overline{M}^n)_s$, it follows immediately that $\overline{Q}_n = L Q_n$, so that it is sufficient to prove the proposition under the assumption that L is complete. Assume that ϕ is as described and that $\phi(x) \theta \in Q_n$. If $g(Z) = Z^t + a_t Z^{t-1} + \cdots + a_1$ is the minimal polynomial for θ over the ring P, then $Z^t + \phi a_t Z^{t-1} + \cdots + \phi a_1$ is the minimal polynomial of $\phi(x) \theta$ over P, and by Lemma 1, $(\phi(x)) a_i \in X_0^n$. Since P is a regular local ring, it follows that $a_i \in X_0^{n-s}$ so that $\theta \in Q_{n-s}$, q.e.d.
3. Let L be a two dimensional local domain that is integrally closed in its quotient field F, and let the notations of the previous sections be retained.

Lemma 3. If g and h are positive integers, then

$$(X^gQ_h): (Lx_j) = X^{g-1}Q_h, \quad j = 1, 2.$$

Proof. If $x_i\theta \in X^gQ_h$, then

$$(x_i\theta) = \alpha_0x_1^g + \alpha_1x_1^{g-1}x_2 + \cdots + \alpha_gx_2^g,$$

where $\alpha_i \in Q_h, i = 0, 1, \ldots, g$. Since L is integrally closed, the principal ideal Lx_1 has no embedded components and hence x_2 is in no prime ideal of Lx_1. Hence equation (2) implies that $\alpha_0 = x_1\beta$, and by Proposition 1, $\beta \in Q_{h-1}, x_2\beta \in Q_h$. Hence we can replace the term $\alpha_0x_2^g$ in (2) by $x_1\beta x_2^g$ to obtain $\theta \in X^{g-1}Q_h$, q.e.d.

We now formulate two conditions either of which will insure the finiteness of the integral closure of a ring which occurs in the proof of Proposition 2. The first of these is similar to a condition imposed by Rees in [6]. An integrally closed local domain L will be said to satisfy condition f_1 in case

(a) L has the same characteristic as its residue field;
(b) The completion \hat{L} of L is an integral domain with quotient field \hat{F};
(c) The integral closure T in \hat{F} of any finite ring extension S of L such that $S \subseteq \hat{F}$ is a finite S-module.

An alternative requirement f_2 would also serve our purpose. In view of (a) and a theorem of Cohen [2], the ring \hat{L} is a finite module over the power series ring $P = k\{x_1, x_2, \ldots, x_r\}$, where k is a coefficient field for L and x_1, x_2, \ldots, x_r are parameters. Hence the quotient field F of \hat{L} is a finite algebraic extension of the quotient field E of P. We shall say that L satisfies condition f_2 if (a) and (b) hold and if F is separable over E.

Proposition 2. If (L, M) is a two dimensional integrally closed local domain that satisfies either condition f_1 or condition f_2, and if X is the ideal generated by a minimal a-basis x_1, x_2 of M, then there exists an integer s such that $Q_{s+t} = X^tQ_s$ for all positive integers t.

Proof. It is clearly sufficient to prove the proposition under the assumption that L is itself complete. If T_j, L_j and $P_j (j = 1, 2)$ are as defined in §2, then condition f_1 asserts that T_j is a finite L_j-module. This conclusion can also be deduced from condition f_2. In fact, L_j is integral over P_j so that T_j is the integral closure in F (the quotient field of the complete domain L_j) of the noetherian domain P_j, and
since F is separable over E the conclusion follows from the fact that P_j is integrally closed.

Let $\omega_1, \omega_2, \ldots, \omega_m$ be a basis for T_1 as an L_1 module. By Lemma 2 there is an integer s such that $x_i^s\omega_i \in L$, $i = 1, 2, \ldots, m$, and for such an integer s, $x_i^s\omega_i \in Q_s$. Now assume that $\theta \in Q_n$, $n \geq s$, so that $\theta/x_i^s \in T_1$. There are elements u_1, u_2, \ldots, u_m of L_1 such that

$$\theta/x_1^n = u_1\omega_1 + u_2\omega_2 + \cdots + u_m\omega_m.\quad(3)$$

Since u_i is a polynomial in x_2/x_1 with coefficients in L it follows that there is an integer g such that $x_i^g u_i \in X^g$, $i = 1, 2, \ldots, m$. Hence if $\mu = \max (s+g, n)$ we can multiply equation (3) by $x_i\mu$ to get $x_i^{-n}\theta \in X^{s-g}Q_s$. If $\mu = n$, then $\theta \in X^{s-g}Q_s$, and the proof is complete. Otherwise, $\mu = s+g$ and we have $x_i^{s+g} \theta \in X^gQ_s$, so that by repeated application of Lemma 3 we again find $\theta \in X^{s-g}Q_s$, q.e.d.

Corollary. For all integers $a, b \geq s$, $Q_aQ_b = Q_{a+b}$. In particular, $Q_n^s = Q_{ns}$ for all positive integers n.

Proof. $Q_{a+b} \supseteq Q_aQ_b \supseteq X^{a+b-2s}Q_s \supseteq X^{a+b-s}Q_s = Q_{a+b}$.

Proposition 3. Under the same hypothesis as Proposition 2, there is an integer n_0 such that when $n \geq n_0$ the length $\lambda(Q_n)$ of Q_n is given by a polynomial in n of degree two that has the same leading term as the Samuel polynomial $s(n)$ that gives the length of X^n when n is large.

Proof. It is known [1] that there exist integers α and β such that for $a \geq \alpha$ and $b \geq \beta$, $\lambda(X^nQ_\alpha) = B(a, b)$, where $B(a, b)$ is a polynomial in a, b of total degree equal to the dimension of L. Hence if $n_0 = s\beta + \alpha$, and if $n \geq n_0$, Proposition 2 implies that $Q_n = X^{n-s\beta}Q_\beta$, so that $\lambda(Q_n) = B(n - s\beta, \beta)$. The conclusion concerning the leading coefficients follows from the fact that $X^{n-s} \supseteq Q_n \supseteq X^n$, so that $\lambda(X^{n-s}) \leq \lambda(Q_n) \leq \lambda(X^n)$, q.e.d.²

4. Let (x_0, x_1, \ldots, x_m) be homogeneous coordinates of a general point of an arithmetically normal surface V defined over an algebraically closed ground field k, assume that the point $(1, 0, \ldots, 0)$ is on V, that x_0, x_1, x_2 are algebraically independent over k and that the coordinate ring $R = k[x_0, x_1, \ldots, x_m]$ is integral over the ring $k[x_0, x_1, x_2]$. If $y_i = x_i/x_0$, then $\Sigma = k(y_1, y_2, \ldots, y_m)$ is the field of rational functions on V. Let $z_{ij} = x_ix_j$, $i, j = 0, 1, \ldots, m$. The ring $R_2 = k[z_{00}, z_{01}, \ldots, z_{mm}]$ is the ring of homogeneous coordinates on a

² The referee has called attention to the fact that in view of Proposition 2, the graded ring $\Sigma Q_n/\Sigma Q_{n+1}$ (in the sense of [8, Chapter II]) is a finite module over the ring $\Sigma X^n/\Sigma X^{n+1}$, and that Proposition 3 follows from this.
derived normal model \(\mathcal{U}_2 \) of \(\mathcal{U} \) belonging to the character of homogeneity 2 [9], while the ring \(S = k [z_{01}, z_{02}, \ldots, z_{mn}] \) is the ring of homogeneous coordinates on the surface \(\mathcal{U} \) obtained from \(\mathcal{U} \) by a quadratic transformation with center \(P = (1, 0, \ldots, 0) \). Since \(z_{00} = z_{01} z_{02} / z_{11} \) it follows that \(\Sigma(z_{00}) = \Sigma(z_{01}) \) so that \(R_2 \) and \(S \) have the same quotient field. Hence if \(S_1 \) is the ring of homogeneous coordinates on a derived arithmetically normal model \(\mathcal{U}_1 \) of \(\mathcal{U} \) belonging to the character of homogeneity \(\delta \), then \(S_1 \) is a subring of \(R_2 \) in view of the fact that \(R_2 \) is integrally closed. An element of \(S_2 \) which is homogeneous of degree \(n \) in the natural grading of \(S_1 \) will be of degree \(n \delta \) if regarded as an element of \(R_2 \) and of degree \(2n \delta \) as an element of \(R \), so that the space \(U(n) \) of forms in \(S_1 \) of degree \(n \) is a subspace of the space \(V(2n \delta) \) of forms in \(R \) of degree \(2n \delta \).

If \(\mathcal{O} = k [y_1, y_2, \ldots, y_m] \), \(\mathcal{O} \mathcal{N} = \sum y_i \) and if \(\mathcal{N}_1 \) is the complete ideal \((\mathcal{N}_1)_0 \), then it is clear that \(\mathcal{N}_1 = Q_t \cap \mathcal{O} \), where \(Q_t \) is the integral closure of \(M^t \) in the local ring \((\mathcal{O}_N, M) \) at the point \(P \) of \(\mathcal{U} \). In particular, \(Q_t \) and \(\mathcal{N}_1 \) have the same length.

Lemma 4. An element \(\omega \) of \(V(2n \delta) \) belongs to the space \(U(n) \) if and only if \(\omega / x_0^{2n \delta} \) is an element of the ideal \(N_{n \delta} \).

Proof. If \(\omega \in U(n) \) then \(\omega \) satisfies an equation of the form \(\omega^r + a_1 \omega^{r-1} + \cdots + a_s = 0 \), where \(a_i \) is an element of \(S \) of degree \(n \delta i \). It follows that \(a_i / x_0^{2n \delta} \) is an element of \(\omega \) in which each term is a power product in \(y_1, y_2, \ldots, y_m \) of degree not less than \(n \delta i \). Hence \(\omega / x_0^{2n \delta} \) is integral over \(N_{n \delta} \) and is therefore in \(N_{n \delta} \).

Assume on the other hand, that \(\omega \in V(2n \delta) \) and that \(\theta = \omega / x_0^{2n \delta} \subseteq N_{n \delta} \). The element \(\theta \) satisfies an equation of the form \(\theta^r + b_1 \theta^{r-1} + \cdots + b_t = 0 \), with \(b_i \in N_{n \delta i} \). Thus the coefficient \(b_i \) can be written as a polynomial in \(y_1, y_2, \ldots, y_m \) in which no term is of degree less than \(n \delta i \). In view of the relations, \(z_{00} y_k = z_{0k}, z_{0ij} y_k = z_{jk} \), it follows that \(z_{00}^{n \delta i} b_i \) is an element of \(S \). Hence if we multiply the equation for \(\theta \) by \(z_{00}^{n \delta i} \) we find an equation that expresses the integral dependence of \(\omega \) on \(S \). Since \(\delta \) is a character of homogeneity, it follows that \(\omega \) is an element of \(S_1 \) of degree \(n \), q.e.d.

Since the dimensions of the spaces \(U(n) \) and \(V(2n \delta) \) are given by the Hilbert functions \(\chi(\mathcal{U}_1, n) \) and \(\chi(\mathcal{U}, 2n \delta) \) respectively, and since \(\lambda(N_n) = \lambda(Q_n) \) for all \(n \), the equality,

\[
(4) \quad \chi(\mathcal{U}, 2n \delta) - \chi(\mathcal{U}_1, n) = \lambda(Q_{n \delta}),
\]

is an immediate consequence of Lemma 4.

It should be noted that equation (4) implies that the length \(\lambda(Q_{n \delta}) \) is a polynomial in \(n \) when \(n \) is large, so that if the local ring \((\mathcal{O}_N, M)\)
satisfies either condition f_1 or f_3, this polynomial will coincide with
the one described in Proposition 3 with n replaced by $n\delta$. It is not
difficult to see that $(0_N, M)$ satisfies condition f_2. In fact, condition
(a) is automatically satisfied and condition (b) is a consequence of
the analytical irreducibility of normal varieties. As to the separabil-
ity requirement imposed by f_2 we note first that since k is algebraically
closed we can assume without loss of generality that the quantities
(y_1, y_2) form a separating transcendence base for Σ/k and at the same
time form a minimal a-basis for the maximal ideal M in 0_N. If $(\overline{L}, \overline{M})$
is the completion of 0_N relative to the powers of M, and if $P = k\{y_1, y_2\}$,
then \overline{L} is integral over P and it is a straightforward matter to see
that every k-derivation of P admits a unique extension to a k-deriva-
tion of \overline{L}. Indeed, the term "k-derivation" is used here in the sense of
[4, §3], and such derivations are uniquely determined by their re-
strictions to dense subrings. Since 0_N is dense in \overline{L} and the poly-
nomial ring $P_0 = k[y_1, y_2]$ is dense in P, and since any k-derivation of
P_0 admits a unique extension to 0_N in view of the separability of Σ
over $k(y_1, y_2)$, our assertion follows. Hence it follows also that the
quotient field F of L is separable over the quotient field E of P as
condition f_2 requires.

Bibliography

3. W. Krull, Beiträge zur Arithmetik kommutativer Integritätsbereiche, I, Math. Z.
9. O. Zariski, Some results in the arithmetic theory of algebraic varieties, Amer. J.

State University of Iowa