INSERTION OF ± SIGNS IN e^x

DONALD J. NEWMAN

We consider the series $e^x = \sum x^n/|n|$ and investigate to what extent its "magnitude" can be lessened by a propitious choice of ±1 coefficients.

This investigation began with the following elementary question. I. Can ϵ_n be chosen ($\epsilon_n = \pm 1$) such that

$$\sum \frac{\epsilon_n x^n}{n} \rightarrow 0 \text{ as } x \rightarrow -\infty \text{ and as } x \rightarrow +\infty?$$

We now prove a rather general theorem which contains the negative answer to I.

Theorem.

$$f(x) = \sum \frac{\epsilon_n x^n}{n} = Oe^{\rho x}, \quad \rho < 1, \text{ as } x \rightarrow +\infty$$

if and only if, for sufficiently large n, the ϵ_n are periodic, with even period 2K, and $\epsilon_{n+1} + \epsilon_{n+2} + \cdots + \epsilon_{n+2K} = 0$.

Proof. The "if" part is, of course, the easy half, for if the ϵ_n are periodic of period 2K then $f(x)$ is a linear combination of the $e^{\omega r x}$ where $\omega = e^{\pi /K}$, $0 \leq r < 2K$. If this combination is

$$f(x) = \sum_{r=0}^{2K-1} a_r e^{\omega r x}$$

then

$$\epsilon_n = \sum_{r=0}^{2K-1} a_r \omega^{r n} \text{ and so } \epsilon_{n+1} + \cdots + \epsilon_{n+2K} = 2Ka_0$$

hence $a_0 = 0$ and so $|f(x)| \leq Me^{(\cos r /k)x}$. We now prove the "only if" statement:

Consider the expression

$$\frac{1}{Z} \int_0^\infty f(x)e^{-x/2}dx = g(Z).$$

Received by the editors August 3, 1959.

444
First note that, since \(|\gamma(x)| \leq Me^{\pi x} \), \(g(Z) \) is analytic for \(\text{Re} \left(\frac{1}{Z} \right) > \rho \). Next note that, for \(\text{Re} \left(\frac{1}{Z} \right) > 1 \),

\[
g(Z) = \frac{1}{Z} \int_0^\infty \sum \epsilon_n \frac{x^n}{n} e^{-x/Z} dx = \frac{1}{Z} \sum \epsilon_n \int_0^\infty \frac{x^n}{n} e^{-x/Z} dx,
\]

the inversion being justified by the bounded convergence theorem since

\[
\int_0^\infty \sum \left| \epsilon_n \frac{x^n}{n} \right| e^{-x/Z} dx = \int_0^\infty e^{e^{-2\text{Re} \left(\frac{1}{Z} \right)}} dx < \infty.
\]

Finally, then, for

\[
\text{Re} \left(\frac{1}{Z} \right) > 1,
\]

\[
g(Z) = \sum \frac{\epsilon_n}{Z} \int_0^\infty \frac{x^n}{n} e^{-x/Z} dx = \sum \epsilon_n Z^n.
\]

The conclusion is that \(\sum \epsilon_n Z^n \) can be continued past the unit circle [into \(\text{Re} \left(\frac{1}{Z} \right) > \rho \), in fact.]

It is a theorem of Carlson [1], however, that if the \(a_n \) are integers, \(\sum a_n Z^n \) has radius of convergence = 1, and \(\sum a_n Z^n \) is not a rational function then \(|Z| = 1 \) is the natural boundary for \(\sum a_n Z^n \).

The conclusion for us, then, is that \(\sum \epsilon_n Z^n \) is a rational function! It therefore follows that, for \(n \) past a certain point, the \(\epsilon_n \) satisfy a finite linear recurrence relation. Because of this and the fact that the \(\epsilon_n \) take on only a finite number of values (\(\epsilon_n = \pm 1 \)), it follows that the \(\epsilon_n \) are periodic past a certain point. Hence

\[
g(Z) = \sum \epsilon_n Z^n = P(Z) + \frac{\delta_0 + \delta_1 Z + \cdots + \delta_{M-1} Z^{M-1}}{1 - Z^M}
\]

where \(P \) is a polynomial, \(\delta_j = \pm 1 \), and \(M \) the period of \(\epsilon_n \). For sufficiently large \(n \) we obtain

\[
\epsilon_{n+1} + \epsilon_{n+2} + \cdots + \epsilon_{n+M} = \delta_0 + \delta_1 + \cdots + \delta_{M-1}
\]

but

\[
\delta_0 + \delta_1 + \cdots + \delta_{M-1} = \lim_{Z \to 1} (1 - Z^M) g(Z)
\]

and the latter is 0 since \(g(Z) \) is regular at 1. Hence \(\epsilon_{n+1} + \cdots + \epsilon_{n+M} = 0 \), and in particular \(M = 2K \), \(K \) integral and the proof is complete.

The negative answer to question I is now easily given. If \(f(x) \to 0 \) at \(\pm \infty \) then, since by our theorem, \(f(x) \) is a trigonometric polynomial, we have \(f(x) = Oe^{-a|x|}, \ x \to \pm \infty \). Since, however, \(|f(x)| \leq e^{c|x|} \) for all

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use

Certain other corollaries can be reaped. It can be shown, e.g. that if $f(x) = O(1)$, $x \to +\infty$, then $f(x)$ is equal to $\pm \sin x \pm \cos x$ or $\pm e^{-x}$.

(This result also settles question I.)

Just one final remark, and this is to state that one can estimate K in terms of ρ namely, $K \leq \exp \left[C_1 (1 - \rho)^{-1/2} \right]$; this estimate is furthermore fairly good since for every $\rho < 1$ there exists $f(x)$ with $K \geq \exp \left[C_2 (1 - \rho)^{-1/4} \right]$.

REFERENCES

Brown University