ON LIE ALGEBRAS OF CLASSICAL TYPE

RICHARD BLOCK

G. B. Seligman has proved in [1] the following result: If \(\mathfrak{g} \) is a simple restricted Lie algebra over an algebraically closed field of characteristic \(p > 7 \), and if \(\mathfrak{g} \) has a restricted representation with non-degenerate trace form, then \(\mathfrak{g} \) is of classical type. By an algebra of classical type is meant an analogue over a field of characteristic \(p \) of one of the simple Lie algebras (including the five exceptional algebras) of characteristic 0; for the precise statement, see [1]. We shall show here that the above result of Seligman may be proved without the assumption of restrictedness of the algebra and its representation.

We begin with a lemma on matrices. Let \(\mathcal{M}_n(\mathbb{F}) \) denote the space of all \(n \times n \) matrices over a field \(\mathbb{F} \), and consider this as a Lie algebra (under commutation) over \(\mathbb{F} \).

Lemma. Let \(\mathfrak{g} \) be a (Lie) subalgebra of \(\mathcal{M}_n(\mathbb{F}) \), such that the trace form \(f(A, B) = \text{tr}(AB) \) is nondegenerate on \(\mathfrak{g} \), and let \(\mathfrak{R} \) be the normalizer in \(\mathcal{M}_n(\mathbb{F}) \) of \(\mathfrak{g} \). Then \(\mathfrak{g} \) is a direct summand of \(\mathfrak{R} \).

Proof. Let \(\mathcal{Q} \) be the set of all \(D \) in \(\mathfrak{R} \) such that \(f(A, D) = 0 \) for all \(A \) in \(\mathfrak{g} \). Every \(C \) in \(\mathfrak{R} \) defines a linear functional \(A \to f(A, C) \) on \(\mathfrak{g} \), so by the nondegeneracy of \(f \) on \(\mathfrak{g} \), there is a \(B = B(C) \) in \(\mathfrak{g} \) such that \(f(A, B) = f(A, C) \) for all \(A \) in \(\mathfrak{g} \). But then \(C - B \in \mathcal{Q} \) and \(C = B + (C-B) \), so \(\mathfrak{R} = \mathfrak{g} + \mathcal{Q} \). Furthermore this sum is a vector space direct sum, since \(\mathfrak{g} \cap \mathcal{Q} = 0 \) by the nondegeneracy of \(f \) on \(\mathfrak{g} \). But \(\mathfrak{g} \) is an ideal of \(\mathfrak{R} \) by the definition of normalizer, and \(\mathcal{Q} \) is ideal of \(\mathfrak{R} \) since \(f(A, [BC]) = f([AB], C) \) for all \(A, B, C \). Thus the lemma is proved.

By a **representation form** on a Lie algebra \(\mathfrak{g} \) we shall mean a bilinear form \(f \) on \(\mathfrak{g} \) for which there is a representation \(S: \mathfrak{g} \to S_\mathfrak{g} = S(\mathfrak{g}) \) of \(\mathfrak{g} \) such that \(f(x, y) = \text{tr}(S_x S_y) \) for all \(x, y \) in \(\mathfrak{g} \).

Theorem 1. Let \(\mathfrak{g} \) be a Lie algebra of characteristic \(p \) with a non-degenerate representation form \(f \). Then \(\mathfrak{g} \) is restricted.

Proof. Let \(S \) be a representation of \(\mathfrak{g} \) giving rise to \(f \). If \(S_x = 0 \) then \(f(x, \mathfrak{g}) = 0 \), so \(x = 0 \). Hence \(S \) is an isomorphism, so it suffices to prove that the image \(S_\mathfrak{g} \) of \(\mathfrak{g} \) is restricted. For any \(A \) and \(C \) in \(S_\mathfrak{g} \),

\[
[AC^p] = \cdots [AC] \cdots C] \in S_\mathfrak{g}.
\]

Presented to the Society, November 21, 1959 under the title *On Lie algebras of Killing-Cartan-Seligman type*; received by the editors August 17, 1959.

1 This research was supported by the Office of Naval Research.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
Hence by the lemma, there is a B in S_8 such that $[AC^p] = [AB]$ for all A in S_8. Since a Lie algebra is restricted if the pth power of every inner derivation is inner, it follows that S_8 and \mathfrak{g} are restricted.

We shall write R for the (right) adjoint representation.

Theorem 2. Let \mathfrak{g} be a simple Lie algebra over an algebraically closed field of characteristic p with a Cartan subalgebra \mathfrak{h}. Suppose that \mathfrak{g} has a nondegenerate representation form f. Then for h in \mathfrak{h}, $R_h^p = 0$ implies $h = 0$.

Proof. Let S be a representation of \mathfrak{g} giving rise to f. We assume, without loss of generality, that S is irreducible, of degree m. By a result of Zassenhaus [1, p. 7], \mathfrak{h} is abelian, so we can put the matrices S_8 in simultaneous triangular form. Now suppose that $h \in \mathfrak{h}$ and $R_h^p = 0$. Then for any a in \mathfrak{g},

$$[S_a S_h^p] = [\cdots [S_a S_h] \cdots S_h] = S_{(\cdots (ah) \cdots)} = S_0 = 0.$$

Therefore by Schur’s Lemma, S_h^p is a scalar matrix. Suppose the diagonal of S_h is $(\alpha_1, \cdots, \alpha_m)$. Then the diagonal of S_h^p is $(\alpha_1^p, \cdots, \alpha_m^p)$. Since S_h^p is a scalar, $\alpha_1^p = \cdots = \alpha_m^p$, so $\alpha_1 = \cdots = \alpha_m$. Now if k is any element of \mathfrak{h}, and the diagonal of k is $(\beta_1, \cdots, \beta_m)$ then the diagonal of $S_h S_k$ is $(\alpha_1 \beta_1, \cdots, \alpha_m \beta_m)$, so $\text{tr}(S_h S_k) = \alpha_1 \text{tr} S_k$.

But $\text{tr} S_k = 0$ since $S_k \subseteq [S_8 S_8]$. Thus $f(h, k) = 0$ for all k in \mathfrak{h}. But any invariant form which is nondegenerate on \mathfrak{g} is nondegenerate on any Cartan subalgebra. Hence $h = 0$ and the theorem is proved.

Now suppose that the hypotheses of Theorem 2 hold. Then \mathfrak{g} must be centerless, and by Theorem 1, \mathfrak{g} is restricted. Hence for any h in \mathfrak{h}, there is a unique h^p (necessarily in \mathfrak{h}) such that $R_h^p = R(h^p)$. The proofs of the diagonalizability of \mathfrak{h} given in [1, p. 8] and [2, pp. 28, 29] now go through under the present weaker hypotheses. Briefly, the mapping $R_h \rightarrow R_h^p$ is a semilinear mapping of the space of diagonalizable R_h with h in \mathfrak{h}. This mapping is one-to-one by Theorem 2, and therefore, by a simple dimension argument, is onto. Hence every diagonalizable R_h, k in \mathfrak{h}, is the pth power of a diagonalizable R_h, h in \mathfrak{h}. But for any h in \mathfrak{h}, some power R_h^{p*} is diagonalizable, and so there is a diagonalizable R_h, k in \mathfrak{h}, with $R_h^{p*} = R_h^{p*}$. It follows from Theorem 2 that $R_h = R_h$. Hence the following result holds.

Theorem 3. Let \mathfrak{g} be as in Theorem 2. Then for every h in \mathfrak{h}, R_h acts diagonally on \mathfrak{g}, that is, $xh = \alpha(h)x$ for every root α and every x in the root space \mathfrak{g}_α.

[1] It is actually sufficient to assume that $\mathfrak{g} = 0$.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
Theorems 2 and 3 generalize results of Jacobson (see [1, pp. 7–8]). It is possible to generalize similarly the results of Jacobson stated as Theorems 4.1 and 4.2 of [1]. Indeed, suppose that the hypotheses of Theorem 2 above are satisfied, and let \(U \) be a representation giving rise to the nondegenerate form \(f \). We suppose without loss of generality that \(U \) is irreducible. Then for any \(x \) in \(\mathfrak{g} \), by Schur’s Lemma, \(U^p_\mathfrak{g} - U(x^p) \) is a scalar matrix, and the trace of this scalar matrix is zero. Thus for any \(e_a \) and \(h \),

\[
\text{tr}(U(e_a)^p U_h) = \text{tr}(U(e_a^p) U_h),
\]

and the proof of Theorem 4.1 given in [1, pp. 11–12] now goes through under the present hypotheses. Now if a nonzero root \(\alpha \) and elements \(e_\alpha \) in \(\mathfrak{g}_\alpha \) and \(e_{-\alpha} \) in \(\mathfrak{g}_{-\alpha} \) are given then \(e_\alpha = e_{-\alpha} = 0 \), so \(U(e_\alpha)^p \) and \(U(e_{-\alpha})^p \) are scalar matrices of trace zero. Thus for a suitable linear functional \(\lambda \) on \(\mathfrak{g} \), by adding the scalar matrix \(\lambda(x) I \) to each \(U \), we obtain a representation \(U' \) for which \(U'(e_\alpha)^p = U'(e_{-\alpha})^p = 0 \), and \(U' \) gives rise to the same trace form as \(U \). With this change, the proof of Theorem 4.2 given in [1] is valid under the present hypotheses. Thus all roots are nonisotropic, that is, if \(\alpha \) is a nonzero root and \(f(h_\alpha, h) = \alpha(h) \) for all \(h \) in \(\mathfrak{g} \), then \(\alpha(h_\alpha) \neq 0 \). For \(p > 3 \), this last result also follows from Theorem 3 by a theorem of Kaplansky [3, p. 165]. We summarize the results of this paragraph in the following theorem.

Theorem 4. Let \(\mathfrak{g} \) be as in Theorem 2 and let \(\alpha \) be a nonzero root. Then \(\alpha \) is nonisotropic, and if \(e_\alpha \in \mathfrak{g}_\alpha \), \(e_\alpha^p = 0 \).

As noted in [3], Seligman makes no further use of the fact that his trace form arises from a restricted representation. Thus the result stated in our introduction holds, that is, Seligman’s Theorem 16.2 [1, p. 77] remains valid without the hypothesis of restrictedness of \(\mathfrak{g} \) and its representation.

In particular it follows that the invariant forms of the algebras \(\mathfrak{g}_3 \) and \(\mathfrak{g}(\mathfrak{g}, \delta, f) \) given in [4] do not arise from a representation.

References

Yale University