DIVISIBLE MODULES

EBEN MATLIS

Introduction. Let R be an integral domain with quotient field Q, and let A be a module over R. A is said to be a divisible R-module, if $rA = A$ for every $r \neq 0 \in R$. An element $x \in A$ is said to be a torsion element of A, if there exists $r \neq 0 \in R$ such that $rx = 0$. The set of torsion elements of A is a submodule of A called the torsion submodule of A, and we will consistently denote it by A_T. We will let $E(A)$ denote the injective envelope of A (see [3]); and $\text{hd}_R A$ will denote the homological dimension of A as an R-module.

We will study conditions, some necessary, some sufficient, for the torsion submodule of a divisible module to be a direct summand. These will be related to the condition that $\text{hd}_R Q = 1$, where Q is the quotient field of R. We will apply these conditions to show that, if R is a Noetherian integral domain in which prime ideals different from zero are maximal, and if D is a divisible module over R, then D is a homomorphic image of an injective R-module and D_T is a direct summand of D. The same conclusions hold, if we merely assume for an arbitrary integral domain that its quotient field is countably generated as a module over the ring.

1. The torsion submodule. It is easy to see that, if C is an injective module over an integral domain R, then its torsion submodule C_T is also an injective R-module, and therefore a direct summand. Namely, any homomorphism of an ideal of R into C_T can be extended to a homomorphism of R into C_T; but this extension must in fact map R into C_T. The following theorem is a generalization of this fact.

Theorem 1.1. Let R be an integral domain and H a homomorphic image of an injective R-module. Then H_T is a direct summand of H.

Proof. The mapping of a free R-module F onto an injective R-module C can be extended to a mapping of $E(F)$ onto C. We can thus assume that there exists a torsion-free, divisible R-module U and an epimorphism $f: U \to H$. Now H/H_T, being torsion-free and divisible, is a direct sum of R-modules Q_i, where Q_i is isomorphic to Q the quotient field of R. Let S_i be the inverse image of Q_i under the canonical map $H \to H/H_T$. We will prove that H_T is a direct summand of each S_i, and by [2, Lemma 2] this will complete the proof of the theorem.

Presented to the Society, September 3, 1959; received by the editors May 23, 1959.
Let \(y \in S_j - H_T \); then \(R_y \) is a torsion-free submodule of \(S_j \). Choose \(x \in U \) such that \(f(x) = y \). Since \(U \) is a vector space over \(Q \), there exists an \(R \)-submodule \(T_j \) of \(U \) such that \(T_j \subseteq Q \) and \(x \in T_j \). If \(u \neq 0 \in T_j \), there exist \(r, s \in R \) such that \(ru = sx \neq 0 \). Since \(rf(u) = sf(x) = sy \neq 0 \), we have \(f(u) \neq 0 \), and thus \(f(T_j) \cong T_j \subseteq Q \).

Since \(H = \sum_i S_i f(u) = w + z \), where \(w \in \sum_i S_i \) and \(z \in S_j \). Hence \(rw + rz = rf(u) = sy \in S_j \). Thus \(rw \in \sum_i S_i \cap S_j = H_T \). Therefore, \(w \in H_T \subseteq S_j \), and so \(f(u) \in S_j \). This shows that \(f(T_j) \subseteq S_j \). Since \(f(T_j) \cong Q \), we have \(f(T_j) \cap H_T = 0 \) and \(f(T_j) \) maps onto \(Q_j \) under the canonical map \(H \to H/H_T \). Thus \(S_j = H_T \oplus f(T_j) \); and so \(H_T \) is a direct summand of \(H \).

Theorem 1.2. Let \(R \) be an integral domain with quotient field \(Q \neq R \). Suppose that \(D_T \) is a direct summand of \(D \) for every divisible \(R \)-module \(D \). Then \(\text{hd}_R Q = 1 \).

Proof. Let \(A \) be any \(R \)-module and let \(E = E(A) \). Since \(E \) is an essential extension of \(A \), \(E/A \) is a torsion \(R \)-module. Let \(G \) be any \(R \)-module extension of \(E/A \) by \(Q \). Since both \(Q \) and \(E/A \) are divisible, \(G \) is also divisible. Clearly \(E/A \) is the torsion submodule of \(G \); and thus by assumption \(E/A \) is a direct summand of \(G \). Thus \(\text{Ext}_R^1(Q, E/A) = 0 \) [1, Theorem 14.1.1]. We also have \(\text{Ext}_R^n(Q, E) = 0 \) for \(n > 0 \), since \(E \) is injective. Therefore, from the exact sequence:

\[
\text{Ext}_R^1(Q, E/A) \to \text{Ext}_R^2(Q, A) \to \text{Ext}_R^2(Q, E)
\]

we deduce that \(\text{Ext}_R^2(Q, A) = 0 \). Hence \(\text{hd}_R Q \leq 1 \). Since \(Q \) is not \(R \)-projective, \(\text{hd}_R Q = 1 \).

Over an arbitrary integral domain it is not true that \(D_T \) is a direct summand for every divisible module \(D \). For by the above theorem this would imply that \(\text{hd}_R Q = 1 \). However, I. Kaplansky has shown (unpublished) that \(\text{hd}_R Q = 1 \) for a valuation ring \(R \) if and only if \(Q \) is a countably generated \(R \)-module.

Theorem 1.3. Let \(R \) be an integral domain with quotient field \(Q \neq R \), and suppose that \(Q \) is countably generated as a \(R \)-module. Then every divisible \(R \)-module \(D \) is a homomorphic image of an injective \(R \)-module. Thus \(D_T \) is a direct summand of \(D \), and \(\text{hd}_R Q = 1 \).

Proof. There exists a countable set of generators \(\{q_n\} \) for \(Q \) over \(R \), and elements \(\{a_{n+1}\} \) of \(R \) such that \(q_1 = 1 \) and \(a_{n+1}q_{n+1} = q_n \). Let \(D \) be a divisible \(R \)-module, and let \(x \neq 0 \in D \). We define a mapping \(f \) from the generators \(\{q_n\} \) to \(D \). Let \(f(1) = x \); then there exists \(x_1 \in D \) such that \(a_{2}x_2 = x \), and we define \(f(q_2) = x_2 \). There exists \(x_3 \in D \) such that \(a_{3}x_3 = x_2 \), and we define \(f(q_3) = x_3 \). We continue in this way and
DIVISIBLE MODULES

define \(f \) on all the generators \(\{ q_n \} \). It is easily verified that \(f \) induces an \(R \)-homomorphism from \(Q \) into \(D \) such that the image contains \(x \). It is now clear that by taking a big enough direct sum \(G \) of copies of \(Q \) we can define an \(R \)-homomorphism of \(G \) onto \(D \).

It should be remarked that if \(R \) is any integral domain and \(S \) a countable, multiplicatively closed subset of \(R \), then it can be easily shown that if \(F \) is a countably generated free \(R \)-module and \(f \) a suitably chosen mapping of \(F \) onto \(RS \), then the kernel of \(f \) is free; and thus \(\text{hd}_R RS \leq 1 \).

2. \(\text{hd}_R Q = 1 \).

Proposition 2.1. Let \(R \) be an integral domain with quotient field \(Q \) such that \(\text{hd}_R Q = 1 \). Let \(H \) be an \(R \)-module. Then the following statements are equivalent:

1. \(\text{Ext}_R(Q/R, H) = 0 \).
2. Every \(R \)-homomorphism from \(R \) into \(H \) can be extended to an \(R \)-homomorphism from \(Q \) into \(H \).
3. \(H \) is a homomorphic image of an injective \(R \)-module.

Proof. That (1) implies (2) follows immediately from the exact sequence:

\[
\text{Hom}_R(Q, H) \to \text{Hom}_R(R, H) \to \text{Ext}_R^1(Q/R, H).
\]

That (2) implies (3) is trivial. That (3) implies (1) follows from the fact that \(\text{hd}_R Q/R = 1 \).

Proposition 2.2. Let \(R \) be an integral domain with quotient field \(Q \) such that \(\text{hd}_R Q = 1 \). Let \(H \) be an \(R \)-module. Then:

1. If \(H \) is a homomorphic image of an injective \(R \)-module, so is \(H_T \).
2. If \(B \) is a submodule of \(H \) and if \(B \) and \(H/B \) are homomorphic images of injective modules, then so is \(H \).

Proof.

1. If \(H \) is a homomorphic image of an injective \(R \)-module, then \(H_T \) is a direct summand of \(H \) by Theorem 1.1. Hence \(H_T \) is also a homomorph image of an injective \(R \)-module.

2. Suppose that \(B \) and \(H/B \) are homomorphic images of injective \(R \)-modules. We have an exact sequence:

\[
\text{Ext}_R^1(Q/R, B) \to \text{Ext}_R^1(Q/R, H) \to \text{Ext}_R^1(Q/R, H/B).
\]

By Proposition 2.1 the two end modules are zero, and thus \(\text{Ext}_R^1(Q/R, H) = 0 \). Hence by Proposition 2.1 again, \(H \) is a homomorphic image of an injective \(R \)-module.
DEFINITION. Let B be a module over an integral domain. Then we will say that B is h-reduced, if B has no nonzero submodules which are homomorphic images of injective modules.

Corollary 2.3. Let A be a module over an integral domain R with quotient field Q such that $\text{hd}_R Q = 1$. Then A has a unique largest submodule H which is a homomorphic image of an injective R-module, and A/H is h-reduced.

Proof. Let H be the sum of all submodules of A which are homomorphic images of injective R-modules. It is clear that H is the unique largest submodule of A which is a homomorphic image of an injective R-module. Suppose that B/H is a homomorphic image of an injective R-module, where B is a submodule of A containing H. Then by Proposition 2.2 B is a homomorphic image of an injective R-module. Therefore, $B = H$ and $B/H = 0$.

Proposition 2.4. Let R be an integral domain with quotient field Q such that $\text{hd}_R Q = 1$. Let D be a divisible module over R, and let H be a submodule of D such that H is a homomorphic image of an injective R-module. Then D/H is a direct summand of D if and only if $D/T/H$ is a direct summand of D/H.

Proof. Suppose that D/T is a direct summand of D, and let S be a complementary summand of D/T in D. Then $D/H \cong D/T/H \oplus S$, and since $D/T/H$ is the torsion submodule of D/H, $D/T/H$ is a direct summand of D/H. Conversely, suppose that $D/H = D/T/H \oplus G/H$, where G is a submodule of D containing H. Now G/H is torsion-free and divisible, hence injective. Thus by Proposition 2.2 and Theorem 1.1 H is a direct summand of G. Let L be a complementary summand of H in G. Then it is clear that $D = D/T \oplus L$.

Proposition 2.5. Let R be an integral domain with quotient field Q, and let T be an h-reduced torsion R-module. Then $\text{Ext}^1_R(Q, T) = 0$ if and only if $T \cong \text{Ext}^1_R(Q/R, T)$.

Proof. Since $\text{Hom}_R(Q, T) = 0$, we have an exact sequence:

$$0 \to \text{Hom}_R(R, T) \to \text{Ext}^1_R(Q/R, T) \to \text{Ext}^1_R(Q, T) \to 0.$$

It follows that if $\text{Ext}^1_R(Q, T) = 0$, then $T \cong \text{Ext}^1_R(Q/R, T)$. Conversely, if $T \cong \text{Ext}^1_R(Q/R, T)$, then the above exact sequence shows that $\text{Ext}^1_R(Q, T)$ is a torsion module. However, $\text{Ext}^1_R(Q, T)$ is torsion-free, and thus $\text{Ext}^1_R(Q, T) = 0$.

Corollary 2.6. Let R be an integral domain with quotient field Q.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
Then the torsion submodule of a divisible R-module is always a direct summand if and only if the following two conditions hold:

1. $\text{hd}_R Q = 1$.
2. $T \cong \text{Ext}_R^h(Q/R, T)$, whenever T is an h-reduced, torsion, divisible R-module.

Proof. The necessity follows from Theorem 1.2 and Proposition 2.5; the sufficiency follows from Corollary 2.3 and Propositions 2.4 and 2.5.

Proposition 2.7. Let R be an integral domain with quotient field Q such that $\text{hd}_R Q = 1$ and $\text{gl. dim. } R \leq 2$. Let S be any torsion-free R-module. Then $\text{hd}_R S \leq 1$. Thus if A is an R-module such that A_T is a homomorphic image of an injective R-module, then A_T is a direct summand of A.

Proof. Let B be any R-module. Then from the exact sequence:

$$0 \to S \to Q \otimes_R S \to Q/R \otimes_R S \to 0$$

we derive the exact sequence:

$$\text{Ext}_R^2(Q \otimes_R S, B) \to \text{Ext}_R^2(S, B) \to \text{Ext}_R^3(Q/R \otimes_R S, B).$$

Since $\text{hd}_R Q = 1$ and $\text{gl. dim. } R \leq 2$, the two end modules are zero. Thus $\text{hd}_R S \leq 1$, and the rest of the theorem follows immediately.

2. **Krull dimension = 1.**

Throughout this section R will be a Noetherian integral domain with the property that nonzero prime ideals are maximal. We will let Q be the quotient field of R and $K = Q/R$.

Definition. Let A be an R-module and M a prime ideal of R. We will say that A is M-primary, if for any $x \neq 0 \in A$, the order ideal of x is an M-primary ideal. If B is any R-module, and A is the set of all elements of B whose order ideal is M-primary (together with the element 0), then A is an M-primary R-module which we will call the M-primary component of B.

Lemma 3.1. Let B be any torsion R-module. Then B is the direct sum of its M-primary components, M ranging over the prime ideals of R. Furthermore, $B \otimes_R R_M$ is the M-primary component of B.

Proof. Let $\{ M_a \}$ be the collection of nonzero prime ideals of R. By [3, Theorem 3.3] $E(B) = \sum_a \oplus E_a$, where E_a is the M_a-component of $E(B)$. Let $B_a = B \cap E_a$; then B_a is the M_a-component of B. Let $x \neq 0 \in B$; then $x = x_1 + \cdots + x_n$, where $x_i \in E_i$. Now $\cap_{i=2}^n M_i \subseteq M_1$;
hence there exists \(s \in \cap M_i \) such that \(s \in M_i \). Then there exists an integer \(k > 0 \) such that \(s^k x_i = 0 \) for \(i = 2, \ldots, n \). Hence \(s^k x = s^k x_1 \).

There are elements \(m \in M \) and \(t \in R \) such that \(1 = m + ts^k \). There is an integer \(q > 0 \) such that \(m^q x_1 = 0 \). Since \(1 = m^q + rs^k \), \(r \in R \), we have \(x_1 = rs^k x_1 = rs^k x \in B_1 \). Similarly \(x_i \in B_i \) for \(i = 2, \ldots, n \). Thus \(B = \sum a_i \oplus B_a \).

Let \(M_e \) be a prime ideal of \(R \). Clearly \(B_a \otimes_R R_{M_e} = 0 \), if \(M_a \neq M_e \). Thus \(B \otimes_R R_{M_e} = B \otimes_R R_{M_a} \). It is easily seen that the canonical map \(B_a \to B \otimes_R R_{M_a} \) is an epimorphism. However, since \(B_a \) is \(M_e \)-primary, the kernel of this map is zero. Thus \(B_a = B_a \otimes_R R_{M_e} \), and so \(B \otimes_R R_{M_a} = B_a \).

Lemma 3.2. \(\text{hd}_R Q = 1 \).

Proof. It is sufficient to prove that \(\text{hd}_R K = 1 \). By Lemma 3.1 \(K = \sum a_i \oplus K_{M_a} \); thus it is sufficient to prove that \(\text{hd}_R K_{M_a} = 1 \). For this it is sufficient to prove that if \(D \) is any divisible \(R \)-module, then \(\text{Ext}_R(K_{M_a}, D) = 0 \). Let \(A \) be any extension of \(D \) by \(K_{M_a} \); then \(A \) is a divisible \(R \)-module. We have \(D = \sum a_i \oplus D_{M_a} \) and \(A = \sum a_i \oplus A_{M_a} \). Clearly \(D_{M_a} = D \cap A_{M_a} \). Hence for \(a \neq v \), we have \(D_{M_a} = A_{M_a} \). Thus we have an exact sequence:

\[
0 \to D_{M_a} \to A_{M_a} \to K_{M_a} \to 0,
\]

and all of the modules and mappings of this sequence are \(R_{M_a} \)-modules and mappings. Thus we can assume that \(R \) is a local ring with a single nonzero prime ideal \(M \).

Take \(s \neq 0 \in M \), and let \(S \) be the multiplicatively closed set consisting of the powers of \(s \). Now \(R_S \subset Q \); on the other hand, the prime ideals of \(R_S \) and the prime ideals of \(R \) not meeting \(S \) are in 1-1 correspondence. Thus \(R_S \) is a field, and \(R_S = Q \). Therefore, \(Q \) is a countably generated \(R \)-module; and thus \(\text{hd}_R Q = 1 \) by Theorem 1.3, or the remark following it.

Theorem 3.3. Every divisible \(R \)-module \(D \) is a homomorphic image of an injective \(R \)-module; and thus \(D_T \) is a direct summand of \(D \).

Proof. Since \(\text{hd}_R Q = 1 \) by Lemma 3.2, it follows from Proposition 2.2 that we only need to prove that \(D_T \) is a homomorphic image of an injective \(R \)-module. By Lemma 3.1 \(D_T = \sum a_i \oplus D_{T_a} \), where \(D_{T_a} = D_T \otimes_R R_{M_a} \) is a divisible \(R_{M_a} \)-module. As we have seen in Lemma 3.2, \(Q \) is a countably generated \(R_{M_a} \)-module; and thus by Theorem 1.3, \(D_{T_a} \) is a homomorphic image of an injective \(R_{M_a} \)-module. Thus \(D_{T_a} \) is a homomorphic image of an injective \(R \)-module; and therefore, the same is true of \(D_T \).
A CHARACTERIZATION OF ALGEBRAIC NUMBER FIELDS WITH CLASS NUMBER TWO

L. CARLITZ

Let \(Z = \mathbb{Q}(\theta) \) denote an algebraic number field over the rationals with class number \(h \). It is familiar that \(h = 1 \) if and only if unique factorization into prime holds for the integers of \(Z \). For fields with \(h \leq 2 \) we have the following criterion.

Theorem. The algebraic number field \(Z \) has class number \(h = 2 \) if and only if for every nonzero integer \(\alpha \in Z \) the number of primes \(\pi_j \) in every factorization

\[
\alpha = \pi_1 \pi_2 \cdots \pi_k
\]

depends only on \(\alpha \).

Suppose first that \(h = 2 \) and consider the factorization into prime ideals

\[
(\alpha) = \mathfrak{p}_1 \cdots \mathfrak{p}_s \mathfrak{r}_1 \cdots \mathfrak{r}_t,
\]

where the \(\mathfrak{p}_j \) are principal ideals while the \(\mathfrak{r}_j \) are not. Then

\[
\mathfrak{p}_j = (\pi_j) \quad (j = 1, \ldots, s).
\]

Since \(h = 2 \), it follows that

\[
\mathfrak{r}_i \mathfrak{r}_j = (\sigma_{ij}) \quad (i, j = 1, \ldots, t);
\]

moreover \(t \) must be even, \(t = 2u \), say. Thus every factorization into primes implied by \((2) \), for example

Received by the editors August 3, 1959.

\(^1\) Research sponsored by National Science Foundation grant NSF G-9425.