DIVISIBLE MODULES
EBEN MATLIS

Introduction. Let R be an integral domain with quotient field Q, and let A be a module over R. A is said to be a divisible R-module, if $rA = A$ for every $r \neq 0 \in R$. An element $x \in A$ is said to be a torsion element of A, if there exists $r \neq 0 \in R$ such that $rx = 0$. The set of torsion elements of A is a submodule of A called the torsion submodule of A, and we will consistently denote it by A_T. We will let $E(A)$ denote the injective envelope of A (see [3]); and $\text{hd}_R A$ will denote the homological dimension of A as an R-module.

We will study conditions, some necessary, some sufficient, for the torsion submodule of a divisible module to be a direct summand. These will be related to the condition that $\text{hd}_R Q = 1$, where Q is the quotient field of R. We will apply these conditions to show that, if R is a Noetherian integral domain in which prime ideals different from zero are maximal, and if D is a divisible module over R, then D is a homomorphic image of an injective R-module and D_T is a direct summand of D. The same conclusions hold, if we merely assume for an arbitrary integral domain that its quotient field is countably generated as a module over the ring.

1. The torsion submodule. It is easy to see that, if C is an injective module over an integral domain R, then its torsion submodule C_T is also an injective R-module, and therefore a direct summand. Namely, any homomorphism of an ideal of R into C_T can be extended to a homomorphism of R into C_T. The following theorem is a generalization of this fact.

Theorem 1.1. Let R be an integral domain and H a homomorphic image of an injective R-module. Then H_T is a direct summand of H.

Proof. The mapping of a free R-module F onto an injective R-module C can be extended to a mapping of $E(F)$ onto C. We can thus assume that there exists a torsion-free, divisible R-module U and an epimorphism $f: U \to H$. Now H/H_T, being torsion-free and divisible, is a direct sum of R-modules Q_i, where Q_i is isomorphic to Q the quotient field of R. Let S_i be the inverse image of Q_i under the canonical map $H \to H/H_T$. We will prove that H_T is a direct summand of each S_i, and by [2, Lemma 2] this will complete the proof of the theorem.

Presented to the Society, September 3, 1959; received by the editors May 23, 1959.

385

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Let $y \in S_j - H_T$; then Ry is a torsion-free submodule of S_j. Choose $x \in U$ such that $f(x) = y$. Since U is a vector space over Q, there exists an R-submodule T_j of U such that $T_j \cong Q$ and $x \in T_j$. If $u \neq 0 \in T_j$, there exist $r, s \in R$ such that $ru = sx \neq 0$. Since $rf(u) = sf(x) = sy \neq 0$, we have $f(u) \neq 0$, and thus $f(T_j) \cong T_j \cong Q$.

Since $H = \sum_i S_i$, $f(u) = w + z$, where $w \in \sum_{i \neq j} S_i$ and $z \in S_j$. Hence $rw + rz = rf(u) = sy \in S_j$. Thus $rw \in \sum_{i \neq j} S_i \cap S_j = H_T$. Therefore, $w \in H_T \subset S_j$, and so $f(u) \in S_j$. This shows that $f(T_j) \subset S_j$. Since $f(T_j) \cong Q$, we have $f(T_j) \cap H_T = 0$ and $f(T_j)$ maps onto Q_j under the canonical map $H \to H/H_T$. Thus $S_j = H_T \oplus f(T_j)$; and so H_T is a direct summand of H.

Theorem 1.2. Let R be an integral domain with quotient field $Q \not\cong R$. Suppose that D_T is a direct summand of D for every divisible R-module D. Then $h_{dR} Q = 1$.

Proof. Let A be any R-module and let $E = E(A)$. Since E is an essential extension of A, E/A is a torsion R-module. Let G be any R-module extension of E/A by Q. Since both Q and E/A are divisible, G is also divisible. Clearly E/A is the torsion submodule of G; and thus by assumption E/A is a direct summand of G. Thus $\text{Ext}^1_R(Q, E/A) = 0$ [1, Theorem 14.1.1]. We also have $\text{Ext}^n_R(Q, E) = 0$ for $n > 0$, since E is injective. Therefore, from the exact sequence:

$$\text{Ext}^1_R(Q, E/A) \to \text{Ext}^2_R(Q, A) \to \text{Ext}^2_R(Q, E)$$

we deduce that $\text{Ext}^2_R(Q, A) = 0$. Hence $h_{dR} Q \leq 1$. Since Q is not R-projective, $h_{dR} Q = 1$.

Over an arbitrary integral domain it is not true that D_T is a direct summand for every divisible module D. For by the above theorem this would imply that $h_{dR} Q = 1$. However, I. Kaplansky has shown (unpublished) that $h_{dR} Q = 1$ for a valuation ring R if and only if Q is a countably generated R-module.

Theorem 1.3. Let R be an integral domain with quotient field $Q \not\cong R$, and suppose that Q is countably generated as a R-module. Then every divisible R-module D is a homomorphic image of an injective R-module. Thus D_T is a direct summand of D, and $h_{dR} Q = 1$.

Proof. There exists a countable set of generators $\{q_n\}$ for Q over R, and elements $\{a_{n+1}\}$ of R such that $q_1 = 1$ and $a_{n+1}q_{n+1} = q_n$. Let D be a divisible R-module, and let $x \neq 0 \in D$. We define a mapping f from the generators $\{q_n\}$ to D. Let $f(1) = x$; then there exists $x_1 \in D$ such that $a_2x_2 = x$, and we define $f(q_2) = x_2$. There exists $x_3 \in D$ such that $a_2x_3 = x_2$, and we define $f(q_3) = x_3$. We continue in this way and...
define \(f \) on all the generators \(\{ q_n \} \). It is easily verified that \(f \) induces an \(R \)-homomorphism from \(Q \) into \(D \) such that the image contains \(x \). It is now clear that by taking a big enough direct sum \(G \) of copies of \(Q \) we can define an \(R \)-homomorphism of \(G \) onto \(D \).

It should be remarked that if \(R \) is any integral domain and \(S \) a countable, multiplicatively closed subset of \(R \), then it can be easily shown that if \(F \) is a countably generated free \(R \)-module and \(f \) a suitably chosen mapping of \(F \) onto \(R_S \), then the kernel of \(f \) is free; and thus \(\text{hd}_R R_S \leq 1 \).

2. \(\text{hd}_R Q = 1 \).

Proposition 2.1. Let \(R \) be an integral domain with quotient field \(Q \) such that \(\text{hd}_R Q = 1 \). Let \(H \) be an \(R \)-module. Then the following statements are equivalent:

1. \(\text{Ext}_R^1(Q/R, H) = 0 \).
2. Every \(R \)-homomorphism from \(R \) into \(H \) can be extended to an \(R \)-homomorphism from \(Q \) into \(H \).
3. \(H \) is a homomorphic image of an injective \(R \)-module.

Proof. That (1) implies (2) follows immediately from the exact sequence:

\[
\text{Hom}_R(Q, H) \rightarrow \text{Hom}_R(R, H) \rightarrow \text{Ext}_R^1(Q/R, H).
\]

That (2) implies (3) is trivial. That (3) implies (1) follows from the fact that \(\text{hd}_R Q/R = 1 \).

Proposition 2.2. Let \(R \) be an integral domain with quotient field \(Q \) such that \(\text{hd}_R Q = 1 \). Let \(H \) be an \(R \)-module. Then:

1. If \(H \) is a homomorphic image of an injective \(R \)-module, so is \(H_T \).
2. If \(B \) is a submodule of \(H \) and if \(B \) and \(H/B \) are homomorphic images of injective modules, then so is \(H \).

Proof.

1. If \(H \) is a homomorphic image of an injective \(R \)-module, then \(H_T \) is a direct summand of \(H \) by Theorem 1.1. Hence \(H_T \) is also a homomorphic image of an injective \(R \)-module.

2. Suppose that \(B \) and \(H/B \) are homomorphic images of injective \(R \)-modules. We have an exact sequence:

\[
\text{Ext}_R^1(Q/R, B) \rightarrow \text{Ext}_R^1(Q/R, H) \rightarrow \text{Ext}_R^1(Q/R, H/B).
\]

By Proposition 2.1 the two end modules are zero, and thus \(\text{Ext}_R^1(Q/R, H) = 0 \). Hence by Proposition 2.1 again, \(H \) is a homomorphic image of an injective \(R \)-module.
Definition. Let B be a module over an integral domain. Then we will say that B is h-reduced, if B has no nonzero submodules which are homomorphic images of injective modules.

Corollary 2.3. Let A be a module over an integral domain R with quotient field Q such that $\text{hd}_R Q = 1$. Then A has a unique largest submodule H which is a homomorphic image of an injective R-module, and A/H is h-reduced.

Proof. Let H be the sum of all submodules of A which are homomorphic images of injective R-modules. It is clear that H is the unique largest submodule of A which is a homomorphic image of an injective R-module. Suppose that B/H is a homomorphic image of an injective R-module, where B is a submodule of A containing H. Then by Proposition 2.2 B is a homomorphic image of an injective R-module. Therefore, $B = H$ and $B/H = 0$.

Proposition 2.4. Let R be an integral domain with quotient field Q such that $\text{hd}_R Q = 1$. Let D be a divisible module over R, and let H be a submodule of D_T such that H is a homomorphic image of an injective R-module. Then D_T is a direct summand of D if and only if D_T/H is a direct summand of D/H.

Proof. Suppose that D_T is a direct summand of D, and let S be a complementary summand of D_T in D. Then $D/H \cong D_T/H \oplus S$, and since D_T/H is the torsion submodule of D/H, D_T/H is a direct summand of D/H. Conversely, suppose that $D/H = D_T/H \oplus G/H$, where G is a submodule of D containing H. Now G/H is torsion-free and divisible, hence injective. Thus by Proposition 2.2 and Theorem 1.1 H is a direct summand of G. Let L be a complementary summand of H in G. Then it is clear that $D = D_T \oplus L$.

Proposition 2.5. Let R be an integral domain with quotient field Q, and let T be an h-reduced torsion R-module. Then $\text{Ext}^1_R(Q, T) = 0$ if and only if $T \cong \text{Ext}^1_R(Q/R, T)$.

Proof. Since $\text{Hom}_R(Q, T) = 0$, we have an exact sequence:

$$0 \rightarrow \text{Hom}_R(R, T) \rightarrow \text{Ext}^1_R(Q/R, T) \rightarrow \text{Ext}^1_R(Q, T) \rightarrow 0.$$

It follows that if $\text{Ext}^1_R(Q, T) = 0$, then $T \cong \text{Ext}^1_R(Q/R, T)$. Conversely, if $T \cong \text{Ext}^1_R(Q/R, T)$, then the above exact sequence shows that $\text{Ext}^1_R(Q, T)$ is a torsion module. However, $\text{Ext}^1_R(Q, T)$ is torsion-free, and thus $\text{Ext}^1_R(Q, T) = 0$.

Corollary 2.6. Let R be an integral domain with quotient field Q.
Then the torsion submodule of a divisible \mathcal{R}-module is always a direct summand if and only if the following two conditions hold:

1. $hd_{\mathcal{R}} Q = 1$.
2. $T \cong \text{Ext}_{\mathcal{R}}^1(Q/R, T)$, whenever T is an h-reduced, torsion, divisible \mathcal{R}-module.

Proof. The necessity follows from Theorem 1.2 and Proposition 2.5; the sufficiency follows from Corollary 2.3 and Propositions 2.4 and 2.5.

Proposition 2.7. Let \mathcal{R} be an integral domain with quotient field Q such that $hd_{\mathcal{R}} Q = 1$ and gl. dim. $\mathcal{R} \leq 2$. Let S be any torsion-free \mathcal{R}-module. Then $hd_{\mathcal{R}} S \leq 1$. Thus if A is an \mathcal{R}-module such that A_T is a homomorphic image of an injective \mathcal{R}-module, then A_T is a direct summand of A.

Proof. Let B be any \mathcal{R}-module. Then from the exact sequence:

$$0 \rightarrow S \rightarrow Q \otimes_{\mathcal{R}} S \rightarrow Q/R \otimes_{\mathcal{R}} S \rightarrow 0$$

we derive the exact sequence:

$$\text{Ext}_{\mathcal{R}}^2(Q \otimes_{\mathcal{R}} S, B) \rightarrow \text{Ext}_{\mathcal{R}}^2(S, B) \rightarrow \text{Ext}_{\mathcal{R}}^3(Q/R \otimes_{\mathcal{R}} S, B).$$

Since $hd_{\mathcal{R}} Q = 1$ and gl. dim. $\mathcal{R} \leq 2$, the two end modules are zero. Thus $hd_{\mathcal{R}} S \leq 1$, and the rest of the theorem follows immediately.

2. **Krull dimension = 1.**

Throughout this section \mathcal{R} will be a Noetherian integral domain with the property that nonzero prime ideals are maximal. We will let Q be the quotient field of \mathcal{R} and $K = Q/R$.

Definition. Let A be an \mathcal{R}-module and M a prime ideal of \mathcal{R}. We will say that A is M-primary, if for any $x \neq 0 \in A$, the order ideal of x is an M-primary ideal. If B is any \mathcal{R}-module, and A is the set of all elements of B whose order ideal is M-primary (together with the element 0), then A is an M-primary \mathcal{R}-module which we will call the M-primary component of B.

Lemma 3.1. Let B be any torsion \mathcal{R}-module. Then B is the direct sum of its M-primary components, M ranging over the prime ideals of \mathcal{R}. Furthermore, $B \otimes_{\mathcal{R}} R_M$ is the M-primary component of B.

Proof. Let $\{ M_a \}$ be the collection of nonzero prime ideals of \mathcal{R}. By [3, Theorem 3.3] $E(B) = \sum_a \oplus E_a$, where E_a is the M_a-component of $E(B)$. Let $B_a = B \cap E_a$; then B_a is the M_a-component of B. Let $x \neq 0 \subseteq B$; then $x = x_1 + \cdots + x_n$, where $x_i \subseteq E_i$. Now $\cap_{i=2}^n M_i \subseteq M_1$.
hence there exists \(s \in \cap_{i} M_i \) such that \(s \in M_1 \). Then there exists an integer \(k > 0 \) such that \(s^k x_i = 0 \) for \(i = 2, \ldots, n \). Hence \(s^k \bar{x} = s^k x_1 \).

There are elements \(m \in M \) and \(t \in R \) such that \(1 = mt + ts^k \). There is an integer \(q > 0 \) such that \(m^q x_1 = 0 \). Since \(1 = m^q + rs^k \), \(r \in R \), we have \(x_1 = r s^k x_1 = rs^k x \in B_1 \). Similarly \(x_i \in B_i \) for \(i = 2, \ldots, n \). Thus \(B = \sum \alpha \oplus B_\alpha \).

Let \(M \) be a prime ideal of \(R \). Clearly \(B_\alpha \otimes_R R_{M_\alpha} = 0 \), if \(M_\alpha \neq M_\nu \). Thus \(B \otimes_R R_{M_\nu} = B_\nu \otimes_R R_{M_\nu} \). It is easily seen that the canonical map \(B_\nu \to B_\nu \otimes_R R_{M_\nu} \) is an epimorphism. However, since \(B_\nu \) is \(M_\nu \)-primary, the kernel of this map is zero. Thus \(B_\nu = B_\nu \otimes_R R_{M_\nu} \), and so \(B \otimes_R R_{M_\nu} = B_\nu \).

Lemma 3.2. \(\text{hd}_R Q = 1 \).

Proof. It is sufficient to prove that \(\text{hd}_R K = 1 \). By Lemma 3.1 \(K = \sum \alpha \oplus K_{M_\alpha} \); thus it is sufficient to prove that \(\text{hd}_R K_{M_\alpha} = 1 \). For this it is sufficient to prove that if \(D \) is any divisible \(R \)-module, then \(\text{Ext}_R(K_{M_\alpha}, D) = 0 \). Let \(A \) be any extension of \(D \) by \(K_{M_\alpha} \); then \(A \) is a divisible \(R \)-module. We have \(D = \sum \alpha \oplus D_{M_\alpha} \) and \(A = \sum \alpha \oplus A_{M_\alpha} \). Clearly \(D_{M_\alpha} = D \cap A_{M_\alpha} \). Hence for \(\alpha \neq \nu \), we have \(D_{M_\alpha} = A_{M_\alpha} \). Thus we have an exact sequence:

\[
0 \to D_{M_\nu} \to A_{M_\nu} \to K_{M_\nu} \to 0,
\]
and all of the modules and mappings of this sequence are \(R_{M_\nu} \)-modules and mappings. Thus we can assume that \(R \) is a local ring with a single nonzero prime ideal \(M \).

Take \(s \neq 0 \in M \), and let \(S \) be the multiplicatively closed set consisting of the powers of \(s \). Now \(R_S \subset Q \); on the other hand, the prime ideals of \(R_S \) and the prime ideals of \(R \) not meeting \(S \) are in 1-1 correspondence. Thus \(R_S \) is a field, and \(R_S = Q \). Therefore, \(Q \) is a countably generated \(R \)-module; and thus \(\text{hd}_R Q = 1 \) by Theorem 1.3, or the remark following it.

Theorem 3.3. Every divisible \(R \)-module \(D \) is a homomorphic image of an injective \(R \)-module; and thus \(D_T \) is a direct summand of \(D \).

Proof. Since \(\text{hd}_R Q = 1 \) by Lemma 3.2, it follows from Proposition 2.2 that we only need to prove that \(D_T \) is a homomorphic image of an injective \(R \)-module. By Lemma 3.1 \(D_T = \sum \alpha \oplus D_{T_\alpha} \), where \(D_{T_\alpha} = D_T \otimes_R R_{M_\alpha} \) is a divisible \(R_{M_\alpha} \)-module. As we have seen in Lemma 3.2, \(Q \) is a countably generated \(R_{M_\alpha} \)-module; and thus by Theorem 1.3, \(D_{T_\alpha} \) is a homomorphic image of an injective \(R_{M_\alpha} \)-module. Thus \(D_{T_\alpha} \) is a homomorphic image of an injective \(R \)-module; and therefore, the same is true of \(D_T \).
A CHARACTERIZATION OF ALGEBRAIC NUMBER FIELDS WITH CLASS NUMBER TWO

L. CARLITZ

Let $Z = R(\theta)$ denote an algebraic number field over the rationals with class number h. It is familiar that $h = 1$ if and only if unique factorization into prime holds for the integers of Z. For fields with $h \leq 2$ we have the following criterion.

Theorem. The algebraic number field Z has class number 2 if and only if for every nonzero integer $\alpha \in Z$ the number of primes π_i in every factorization

\[\alpha = \pi_1 \pi_2 \cdots \pi_k \]

depends only on α.

Suppose first that $h = 2$ and consider the factorization into prime ideals

\[(\alpha) = p_1 \cdots p_s r_1 \cdots r_t, \]

where the p_i are principal ideals while the r_j are not. Then

\[p_i = (\pi_i) \quad (j = 1, \cdots, s). \]

Since $h = 2$, it follows that

\[r_i r_j = (\rho_{ij}) \quad (i, j = 1, \cdots, t); \]

moreover t must be even, $= 2u$, say. Thus every factorization into primes implied by (2), for example

Received by the editors August 3, 1959.

Research sponsored by National Science Foundation grant NSF G-9425.