Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

The converse of the Individual Ergodic theorem


Author: Fred B. Wright
Journal: Proc. Amer. Math. Soc. 11 (1960), 415-420
MSC: Primary 28.00
DOI: https://doi.org/10.1090/S0002-9939-1960-0117318-7
MathSciNet review: 0117318
Full-text PDF Free Access

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] G. D. Birkhoff, Proof of the ergodic theorem, Proc. Nat. Acad. Sci. U. S. A. vol. 17 (1931) pp. 656-660.
  • [2] Y. N. Dowker, Invariant measure and the ergodic theorems, Duke Math. J. vol. 14 (1947) pp. 1051-1062. MR 0023459 (9:359b)
  • [3] N. Dunford and J. Schwartz, Linear operators, Part I, New York, Interscience, 1958.
  • [4] P. R. Halmos, An ergodic theorem, Proc. Nat. Acad. Sci. U.S.A. vol. 32 (1946) pp. 151-161. MR 0016555 (8:34f)
  • [5] -, Lectures on ergodic theory, Publications of the Mathematical Society of Japan, no. 3, Tokyo, 1956. MR 0097489 (20:3958)
  • [6] W. Hurewicz, Ergodic theorems without invariant measure, Ann. of Math. vol. 45 (1944) pp. 373-393. MR 0009427 (5:148a)
  • [7] A. Khintchine, Zur Birkhoffschen Lösung des Ergodenproblems, Math. Ann. vol. 107 (1932) pp. 872-884.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 28.00

Retrieve articles in all journals with MSC: 28.00


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1960-0117318-7
Article copyright: © Copyright 1960 American Mathematical Society

American Mathematical Society