A NOTE ON A NUMBER THEORETICAL PAPER OF SIERPINSKI

ALFRED BRAUER

W. Sierpinski [5] has just published the following theorem:

"The set A of all primes which are divisors of integers of form 2^r+1 contains all primes of the form $8n \pm 3$ and infinitely many primes of the form $8n+1$. The set B of all primes which are divisors of integers of the form $2^{2s+1}-1$ contains all primes of the form $8n+7$ and some primes of the form $8n+1$. Every prime of form $8n+1$ belongs either to A or to B. The question whether the set B contains infinitely many primes of form $8n+1$ is raised, but remains open."

In this note a simple proof of this result will be given. Moreover, it will be shown that B contains infinitely many primes of form $8n+1$. More exactly, we prove a little more.

Theorem 1. Let a be a given positive integer. An odd prime p is a divisor of an integer of form $ar+1$ if and only if a belongs to an even exponent mod p. The odd prime q is a divisor of an integer of form $a^{2s+1}-1$ if and only if a belongs to an odd exponent mod q.

Proof. If a belongs to an even exponent $2k$ (mod p), then

$$a^{2k} \equiv 1 \pmod{p},$$

hence

$$(a^k + 1)(a^k - 1) \equiv 0 \pmod{p},$$

$$a^k + 1 \equiv 0 \pmod{p}$$

since otherwise $2k$ would not be the exponent to which a belongs (mod p). Conversely, if p divides a^r+1, then

$$a^r \equiv -1 \pmod{p},$$

$$a^{2r} \equiv 1 \pmod{p}.$$

The exponent to which a belongs must be a divisor of $2r$, but not of r, and is therefore even.

If a belongs to the odd exponent $2k+1$ (mod q), then

$$a^{2k+1} \equiv 1 \pmod{q},$$

hence q is a divisor of $a^{2k+1}-1$. Conversely, if q is a divisor of $a^{2s+1}-1$, then

Presented to the Society, November 20, 1959; received by the editors August 7, 1959.
The exponent of $a \pmod{q}$ must be a divisor of $2s+1$, and is therefore odd.

It follows that each odd prime which is relatively prime to a is either a divisor of an integer of form $a^r + 1$ or of an integer of form $a^{2s+1} - 1$.

If, in particular, $a = 2$, then the primes for which 2 belongs to an even exponent form the set A of Sierpinski, the other odd primes the set B. Now 2 is a quadratic nonresidue for the primes p of form $8n \pm 3$, hence by Euler's criterion

$$2^{(p-1)/2} \equiv -1 \pmod{p},$$

and 2 belongs to an even exponent. Moreover, 2 is a quadratic residue for the primes q of form $8n + 7$, hence

$$2^{4n+3} \equiv 1 \pmod{q},$$

and the exponent of 2 is odd. Finally, for $p = 8n + 1$ we have

$$2^4 \equiv 1 \pmod{p},$$

and the exponent to which 2 belongs can be even or odd.

B. M. A. Makowski (see [5]) proved that there are infinitely many primes of form $8n + 1$ which belong to A namely the prime divisors of 2^{2^m+1}. This result follows here at once from Theorem 1 since 2 belongs to an even exponent for all these prime divisors. There exist infinitely many such primes since 2^{2^m+1} and 2^{2^k+1} are relatively prime for $m \neq k$. Finally all these prime divisors for $m > 1$ are of form $8n + 1$ since the odd prime divisors of the 2^{m+1}st cyclotomic polynomial have the form $2^{m+1} + 1$.

This is a special case of the following theorem.

Theorem 2. Let p be a prime of form $8n + 1$. We set

$$p - 1 = 2^su \quad (u \text{ odd}).$$

If 2 is a 2^sth power residue mod p, then p belongs to the set B, otherwise to A.

Proof. If 2 is a 2^sth power residue, then by Euler's criterion

$$2^{(p-1)/2^s} = 2^u \equiv 1 \pmod{p},$$

hence p belongs to B. Otherwise 2 belongs to an even exponent mod p, and p is an element of A by Theorem 1.

We shall use the following theorems on the biquadratic and octavic
character of 2. (See, for instance, the paper of A. L. Whiteman [7].)

If \(p \) is a prime of form \(8n + 1 \), then 2 is a biquadratic residue mod \(p \) if and only if \(p \) can be represented as \(x^2 + 64y^2 \). If \(p \) is of form \(16n + 1 \), then 2 is an octavic residue if and only if \(p \) can be represented as \(x^2 + 256y^2 \). If \(p \) is of form \(16n + 9 \), then 2 is an octavic residue if and only if \(p \) can be represented as \(x^2 + 64y^2 \), but not as \(x^2 + 256y^2 \).

Theorem 3. The number 2 is a biquadratic nonresidue for the infinitely many primes which can be represented as

\[
17x^2 + 64xy + 64y^2.
\]

It is an octavic nonresidue for the infinitely many primes of form \(16n + 1 \) which can be represented as

\[
65x^2 + 256xy + 256y^2
\]

and for the infinitely many primes of form \(16n + 9 \) which can be represented as \(x^2 + 256y^2 \).

All these primes belong to the set \(A \).

Proof. Assume that the prime \(p \) can be represented by the positive properly primitive quadratic form

\[
(1) \quad 17x^2 + 64xy + 64y^2 = x^2 + (4x + 8y)^2 = x^2 + 16(x + 2y)^2.
\]

Then \(x \) must be odd and \(4x + 8y \equiv 4 \pmod{8} \). Hence in the representation of \(p \) as sum of two squares one of the squares is odd and the other divisible by 16, but not by 64. Since this representation is unique, \(p \) cannot be represented as \(x^2 + 64y^2 \). Hence 2 is a biquadratic nonresidue mod \(p \), and consequently a 2\(^{\text{nd}}\) power nonresidue, so that \(p \) belongs to \(A \). It was proved by H. Weber [6] that every positive properly primitive quadratic form represents infinitely many primes. (See also E. Schering [4], P. Bernays [1], W. E. Briggs [2].) Therefore infinitely many primes are represented by (1) and all of them belong to \(A \).

Suppose that \(p \) is a prime of form \(16n + 1 \) and can be represented by the form

\[
(2) \quad 65x^2 + 256xy + 256y^2 = x^2 + (8x + 16y)^2 = x^2 + 64(x + 2y)^2.
\]

Then \(p \) is a biquadratic residue, but an octavic nonresidue since it is representable as \(x^2 + 64y^2 \) but not as \(x^2 + 256y^2 \) because \(x + 2y \) is odd. It was proved by A. Meyer [3] that any positive properly primitive quadratic form represents infinitely many primes which belong to a given linear form if at least one such prime exists. Since the prime 577
is represented by the quadratic form (2) for \(x = y = 1 \) and is of form \(16n + 1 \), infinitely many primes of form \(16n + 1 \) are represented by (2) and all of them belong to \(A \).

Suppose that \(p \) can be represented as \(x^2 + 256y^2 \) and is of form \(16n + 9 \). Since \(p = 281 = 5^2 + 256 \) is such a prime, infinitely many such primes exist. They belong to \(A \) since 2 is an octavic nonresidue for each of them.

Theorem 4. The number 2 is an octavic residue for every prime of form \(16n + 9 \) which can be represented as \(65x^2 + 256xy + 256y^2 \). All these infinitely many primes belong to the set \(B \).

Proof. Let \(q \) be such a prime. It follows from (2) that 2 is an octavic residue mod \(q \). Hence \(q \) belongs to the set \(B \) by Theorem 2. Since 73 is of form \(16n + 9 \) and represented by (2) for \(x = 3, y = -1 \), it follows from the theorem of Meyer that there exist infinitely many such primes \(q \). This proves the theorem.

Bibliography