A NOTE ON GAUSS' FIRST PROOF OF THE QUADRATIC RECIPROCITY THEOREM

L. CARLITZ

We assume that the reader is familiar with Mathews' exposition [1, pp. 45–50] of the inductive proof of the reciprocity theorem. There are three main cases:

I. \(pRq, \)

II. \(pNq, \quad q \equiv 3 \pmod{4}, \)

III. \(pNq, \quad q \equiv 1 \pmod{4}. \)

In I we have \(e^2 - p = qf, \) in II we have \(e^2 + p = qf. \) In III we have first the lemma which asserts the existence of a prime \(p' < q \) such that \(qNp'. \) This implies \(p'Nq, \) so that \(pp'Rq \) and so \(e^2 - pp' = qf. \) In each of the cases I and II it is necessary to treat two sub-cases; in case III there are four sub-cases. Thus in all there are eight cases to consider.

We should like to point out in this note that it is possible to handle all cases simultaneously by introducing a little notation. To begin with, we define

References

Thus we have the single equation

\[e^2 - rp = qf, \]

where \(\varepsilon \) is even and \(f < q, f \) is odd and \(|f| < q \).

Next we put

\[
\begin{align*}
 d &= (f, rp), \\
 f &= df', \\
 e &= de', \\
 rp &= dd',
\end{align*}
\]

so that (1) becomes

\[de'^2 - d' = qf', \]

moreover

\[(f', dd') = (d, d') = (q, dd') = 1. \]

From (2) we get \(qf' \equiv -d' \pmod{4} \), so that

\[q + d' + f' \equiv 1 \pmod{4}. \]

Now from (2) we also get

\[
\left(\frac{dd'}{f'} \right) = \left(\frac{qdf'}{d'} \right) = \left(\frac{-qdf'}{d} \right) = 1,
\]

which gives

\[
\left(\frac{q}{dd'} \right) = \left(\frac{-d'}{d} \right) \left(\frac{d}{d'} \right) \left(\frac{f'}{dd'} \right).
\]

We now apply the generalized reciprocity theorem:

\[
\left(\frac{m}{n} \right) \left(\frac{n}{m} \right) = -1^{(m-1)(n-1)/4},
\]

where \(m \) and \(n \) are odd and relatively prime; also one of the numbers may be negative. The special cases \(m \) or \(n = \pm 1 \) are included. Then we get, since \((dd'/f') = 1 \),

\[\left(\frac{q}{dd'} \right) = (-1)^{\lambda}, \]

where
\[\lambda = \frac{1}{4} (d - 1)(-d' - 1) + \frac{1}{4} (f' - 1)(dd' - 1). \]

Using (3) we find that
\[
\lambda = \frac{1}{4} (d - 1)(-d' - 1) - \frac{1}{4} (q + d')(dd' - 1)
\]
\[
= \frac{1}{4} (d - 1)(-d' - 1) - \frac{1}{4} (d' + 1)(d + d' - 2)
\]
\[
- \frac{1}{4} (q - 1)(dd' - 1)
\]
\[
= - \frac{1}{4} (d' + 1)(2d + d' - 3) - \frac{1}{4} (q - 1)(dd' - 1)
\]
\[
= - \frac{1}{4} (d'^2 - 1) - \frac{1}{2} (d' + 1)(d - 1) - \frac{1}{4} (q - 1)(dd' - 1)
\]
\[
= \frac{1}{4} (q - 1)(r \rho - 1) \pmod{2};
\]

where at the last step we used \(r \rho = dd' \). Thus (4) becomes
\[
(5) \quad \left(\frac{q}{r \rho} \right) = (-1)^{(q-1)(r \rho-1)/4}.
\]

In cases I and II (5) is in obvious agreement with the reciprocity theorem; in III there is also agreement since we have \(qNp' \). Thus in III (5) reduces to
\[
\left(\frac{q}{\rho} \right) = -1,
\]

which is the desired relation.

Reference

Duke University