S^n, and K is then a fibre bundle over S^n. Consequently we have the following commutative diagram of exact sequences

\[\cdots \to \Pi_k(O_n) \to \Pi_k(O_{n+1}) \to \Pi_k(S^n) \to \Pi_{k-1}(O_n) \to \Pi_{k-1}(O_{n+1}) \to \cdots \]

\[\downarrow i_* \quad \downarrow j_* \quad \downarrow i_* \quad \downarrow i_* \]

\[\cdots \to \Pi_k(K_0) \to \Pi_k(K) \to \Pi_k(S^n) \to \Pi_{k-1}(K_0) \to \Pi_{k-1}(K) \to \cdots \]

where \(j_* \) is the identity. It is easily seen that \(\text{Ker}(i_*: \Pi_k(O_{n+1}) \to \Pi_k(K)) \) is the image under \(\Pi_k(O_n) \to \Pi_k(O_{n+1}) \) of \(\text{Ker}(i_*: \Pi_k(O_n) \to \Pi_k(K_0)) \). Since this last kernel is 0 the theorem follows.

References

University of Notre Dame

A NOTE ON GAUSS' FIRST PROOF OF THE QUADRATIC RECIPROCITY THEOREM

L. CARLITZ

We assume that the reader is familiar with Mathews' exposition [1, pp. 45-50] of the inductive proof of the reciprocity theorem. There are three main cases:

I. \(pRq \),
II. \(pNq, q \equiv 3 \pmod{4} \),
III. \(pNq, q \equiv 1 \pmod{4} \).

In I we have \(e^2 - p = qf \), in II we have \(e^2 + p = qf \). In III we have first the lemma which asserts the existence of a prime \(p' < q \) such that \(qNp' \). This implies \(p'Nq \), so that \(pp'Rq \) and so \(e^2 - pp' = qf \). In each of the cases I and II it is necessary to treat two sub-cases; in case III there are four sub-cases. Thus in all there are eight cases to consider.

We should like to point out in this note that it is possible to handle all cases simultaneously by introducing a little notation. To begin with, we define

Received by the editors September 22, 1959.
Thus we have the single equation

\[(1) \quad e^2 - rp = qf,\]

where \(e\) is even and \(q, f\) is odd and \(|f| < q\).

Next we put

\[d = (f, rp), \quad f = df', \quad e = de', \quad rp = dd',\]

so that \(1\) becomes

\[(2) \quad de'^2 - d' = qf';\]

moreover

\[(f', dd') = (d, d') = (q, dd') = 1.\]

From \(2\) we get \(qf' \equiv -d' \pmod{4}\), so that

\[(3) \quad q + d' + f' \equiv 1 \pmod{4}.\]

Now from \(2\) we also get

\[\left(\frac{dd'}{f'} \right) = \left(\frac{qdf'}{d'} \right) = \left(\frac{-qd'f'}{d} \right) = 1,\]

which gives

\[\left(\frac{q}{dd'} \right) = \left(\frac{-d'}{d} \right) \left(\frac{d'}{d} \right) \left(\frac{f'}{dd'} \right).\]

We now apply the generalized reciprocity theorem:

\[\left(\frac{m}{n} \right) \left(\frac{n}{m} \right) = -1^{(m-1)(n-1)/4},\]

where \(m\) and \(n\) are odd and relatively prime; also one of the numbers may be negative. The special cases \(m\) or \(n = \pm 1\) are included. Then we get, since \((dd'/f') = 1,\)

\[(4) \quad \left(\frac{q}{dd'} \right) = (-1)^h,\]

where
\[\lambda = \frac{1}{4} (d - 1)(-d' - 1) + \frac{1}{4} (f' - 1)(dd' - 1). \]

Using (3) we find that
\[\lambda = \frac{1}{4} (d - 1)(-d' - 1) - \frac{1}{4} (q + d')(dd' - 1) \]
\[= \frac{1}{4} (d - 1)(-d' - 1) - \frac{1}{4} (d' + 1)(d + d' - 2) \]
\[- \frac{1}{4} (q - 1)(dd' - 1) \]
\[= - \frac{1}{4} (d' + 1)(2d + d' - 3) - \frac{1}{4} (q - 1)(dd' - 1) \]
\[= - \frac{1}{4} (d'^2 - 1) - \frac{1}{2} (d' + 1)(d - 1) - \frac{1}{4} (q - 1)(dd' - 1) \]
\[= \frac{1}{4} (q - 1)(rp - 1) \pmod{2}; \]

where at the last step we used \(rp = dd' \). Thus (4) becomes
\[(5) \quad \left(\frac{q}{rp} \right) = (-1)^{(q-1)(rp-1)/4}. \]

In cases I and II (5) is in obvious agreement with the reciprocity theorem; in III there is also agreement since we have \(qNp' \). Thus in III (5) reduces to
\[\left(\frac{q}{p} \right) = -1, \]

which is the desired relation.

Reference

Duke University