A DISCRETE ANALOGUE OF THE WEIERSTRASS TRANSFORM

EDWARD NORMAN

1. Introduction and definitions. In this note we consider a discrete analogue of the transform

\[f(x) = \int_{-\infty}^{\infty} e^{-\frac{(x-y)^2}{14}} g(y) dy. \]

This transform may be considered as a convolution; accordingly our analogue will take the form

\[f(n) = \sum_{-\infty}^{\infty} k(n - m) g(m) \]

where the kernel sequence \(k(n) \) is to be appropriately chosen. The choice of \(k(n) \) is motivated as follows.

One way in which the kernel \(e^{-\frac{y^2}{14}} \) arises in the theory of the convolution transform is by consideration of the class of kernels whose bilateral Laplace transform is of the form

\[\frac{e^{as} e^{bs}}{\prod_{1} \left(1 - \frac{s}{a_{k}} \right)^{-1} e^{-s/a_{k}}}. \]

When \(c = 0 \) we obtain the class of kernels whose analogue was considered by Pollard and Standish [4] where the kernels formed a subclass of the totally positive sequences. The totally positive sequences can be characterized as sequences having a generating function of the form

\[e^{as + bs} z^{m} \prod_{1} \frac{(1 + \alpha_{k} z)(1 + \beta_{k} z^{-1})}{(1 - \alpha_{k} z)(1 - \beta_{k} z^{-1})} \]

(see [1]). The factor \(e^{as + bs} z^{m} \) in (1.2) corresponds to the factor \(e^{as} \) in (1.1).

Letting \(a = b = \sqrt{2} \) we have the familiar expansion

\[e^{(\sqrt{2})(x+s^{-1})} = \sum_{-\infty}^{\infty} I_{m}(v) z^{m} \]

Received by the editors February 10, 1959 and, in revised form, October 22, 1959.

1 This work is part of a doctoral thesis done under the direction of Professor Harry Pollard at Cornell University.

where $I_m(v)$ is the modified Bessel coefficient of the first kind.

We take the sequence $\{I_n(1)\}_{n=-\infty}^{\infty} = \{I_n\}_{n=-\infty}^{\infty}$ as the kernel of our transform

$$f(n) = \sum_{m=-\infty}^{\infty} I_{n-m} g(m).$$

Before proceeding further we list some elementary properties of the functions $I_n(v)$.

(i) $I_n(v) = \sum_{s=0}^{\infty} \frac{(v/2)^{n+2s}}{s!(s+n)!}$, \hspace{1cm} n = 0, \pm 1, \pm \cdots$

(ii) $I_n(v) = I_{-n}(v)$; \hspace{1cm} $I_n(-v) = (-1)^n I_n(v)$,

(iii) $\frac{2(1/2)^{|n|}}{|n|!} \leq I_n(1) \leq \frac{3(1/2)^{|n|}}{|n|!}$,

(iv) $I_n(v + v') = \sum_{m=-\infty}^{\infty} I_{n-m}(v) I_m(v')$.

If we take $g(m) = 2|m| m! |z|! / (1+m^2)$ it is clear, by (iii), that (2.13) converges only for the value $n = 0$. We therefore define the transform (1.3) only when it converges for all n.

Define the operators δ and δ^{-1} by the equations

$$\delta f(n) = f(n - 1), \hspace{1cm} \delta^{-1} f(n) = f(n + 1).$$

Then by analogy with the theory of the Weierstrass transform we may expect (1.3) to be inverted by the operator $e^{-(1/2)(t+\delta^{-1})}$ interpreted as

$$[e^{-(1/2)(t+\delta^{-1})}] f(n) = \lim_{t \to 0^+} \sum_{n=-\infty}^{\infty} (-1)^n I_m f(n - m) / \Gamma(1 + tm).$$

The method of summation adopted in (1.4) is a regular method introduced by Mittag-Leffler (see [2; p. 72]). The motivation for choosing Mittag-Leffler summation as the "natural" method for the inversion operator is indicated in the table below.

<table>
<thead>
<tr>
<th></th>
<th>Continuous</th>
<th>Discrete</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kernel</td>
<td>$e^{-t^2/4}$</td>
<td>$I_m 1/m!$</td>
</tr>
<tr>
<td>Convergence factor</td>
<td>$e^{-(1/2)\sqrt{t}}$</td>
<td>$1/\Gamma(1 + t</td>
</tr>
</tbody>
</table>
Unfortunately the operator (1.4) will not serve to invert all convergent transforms (1.3). For example let
\[g(m) = \begin{cases} \frac{2^m m!}{m \log m} & m > 1, \\ 0 & m \leq 1. \end{cases} \]
Then, if \(n > 0 \) say, we have
\[f(n) = \sum_{n}^{\infty} \frac{2^m m!}{(m - n)! n \log m} > \sum_{n}^{\infty} \frac{2^m m!}{m \log m} \]
\[> \sum_{n}^{\infty} \frac{m^n}{m \log m} \]
If in the last sum above we consider only the term with \(m = [e^{n/2}] \) we obtain
\[f(n) > O(e^{n^2/4}) \quad n \to + \infty; \]
and (1.4) does not converge for any value of \(t \).
In view of the above we restrict attention to the class of determining sequences \(g(m) \) which satisfy the condition
\[g(m) = O(|m|^{-x|m|}) \]
as \(|m| \to \infty \), where \(x \) is strictly less than 2. We abbreviate this restriction by writing \(g(m) \in X \).

2. The inversion theorem. We first find the order of the transform.

Theorem 1. If \(g(m) \in X \) then \(f(n) = \sum_{n}^{\infty} I_{n-m} g(m) \) converges absolutely for all \(n \), and
\[f(n) = O(2^{|n|} |n|! (2/x - 1)^{-|n|}) \quad |n| \to \infty. \]
Proof. The first statement is obvious. To prove the second, note that since the order conditions on \(g(m) \) and \(I_m \) are the same for \(m \to + \infty \) and \(m \to - \infty \) the same is true of \(f(n) \). It is therefore sufficient to prove the theorem for \(n \to + \infty \).
\[|f(n)| \leq \sum_{n}^{\infty} I_{n-m} |g(m)| + \sum_{n}^{\infty} I_{n-m} |g(m)| = S' + S. \]
Since \(n > 0 \) it is clear that \(S' \leq \text{const.} \sum_{n}^{\infty} (x/2)^n / n! \to 0 \) as \(n \to \infty \).
\[S \leq \text{const.} 2^n \sum_{n}^{\infty} \frac{(x/2)^m m!}{(m - n)!} = \text{const.} x^n \sum_{n}^{\infty} (m + 1) \cdots (m + n) (x/2)^m. \]
The formula
\[\sum_{m=0}^{\infty} (m + 1) \cdots (m + n) y^m = n!/(1 - y)^{n+1}, \quad y < 1 \]
may be proved by induction. Hence we have
\[S \leq \text{const.} \frac{x^n n!}{(1 - x/2)^n} = \text{const.} 2^n n!(2/x - 1)^n. \]

Theorem 2. If \(g(n) \in \mathcal{X} \) and \(f(n) = \sum_{m=-\infty}^{\infty} I_{n-m} g(m) \), then
\[\lim_{t \to 0^+} \sum_{n=-\infty}^{\infty} (-1)^m I_m f(n - m)/\Gamma(1 + t \, |\, m\, |) = g(n). \]

Proof. There is no loss of generality in taking \(n=0 \). For any \(t > 0 \)
\[
\sum_{m=-\infty}^{\infty} (-1)^m I_m f(-m)/\Gamma(1 + t \, |\, m\, |)
= \sum_{m=-\infty}^{\infty} (-1)^m I_m/\Gamma(1 + t \, |\, m\, |) \sum_{r=-\infty}^{\infty} I_{-m-r} g(r)
= \sum_{r=-\infty}^{\infty} g(r) \sum_{m=-\infty}^{\infty} (-1)^m I_{m-r} I_m/\Gamma(1 + t \, |\, m\, |) = \sum_{r=-\infty}^{\infty} g(r) \mu(r, t).
\]
The interchange of summations is justified by the estimate of Theorem 1.
Since
\[\mu(0, 0) = \sum_{m=-\infty}^{\infty} (-1)^m I_{m-1} I_m(1) = \sum_{m=-\infty}^{\infty} I_{m-1} I_m(-1) = I_0(0) = 1 \]
(see iv) the theorem will be established if we show
\[\lim_{t \to 0^+} \sum_{1}^{\infty} g(r) \mu(r, t) = 0, \]
\[\lim_{t \to 0^+} \sum_{-1}^{-\infty} g(r) \mu(r, t) = 0. \]

We will prove (2.3); the proof of (2.4) is entirely similar.
As a first step let us replace \(1/\Gamma(1 + t \, |\, m\, |) \) by the contour integral
\[\frac{1}{\Gamma(1 + t \, |\, m\, |)} = \frac{1}{2\pi i} \int_{-\infty}^{(0+)} \frac{e^u}{u} \frac{1}{u - t \, |\, m\, |} du, \]
where the path of integration is as shown, the circle being of radius greater than one.
Define the function $K = K(t) = 2^{1/t}(2/x - 1)^{-1/t}$, so that $K \to +\infty$ as $t \to +\infty$. For any $t > 0$ we have

$$2\pi i \sum_{r=1}^{\infty} g(r) \mu(r, t) = \sum_{r=1}^{\infty} g(r) \sum_{m=\infty}^{\infty} (-1)^m I_m I_{m-r} \int_{c_1}^{(0+)} \frac{e^u}{u} u^{-|m|} du$$

$$= \sum_{r=1}^{\infty} g(r) \sum_{m=\infty}^{\infty} (-1)^m (\ldots) \int_{c_1} (\ldots) du$$

$$+ \sum_{r=1}^{\infty} g(r) \sum_{m=\infty}^{\infty} (-1)^m (\ldots) \int_{c_1} (\ldots) du$$

$$+ \sum_{r=1}^{\infty} g(r) \sum_{m=\infty}^{\infty} (-1)^m (\ldots) \int_{c_1} (\ldots) du$$

$$= S + S_1 + S_2.$$

The path C runs from $u = -K(\arg u = -\pi)$ round the circle and back to $u = -K(\arg u = \pi)$, C_1 runs from $-\infty$ to $-K(\arg u = -\pi)$, C_2 runs from $-K$ to $-\infty(\arg u = \pi)$.

We show now that $\lim_{t \to 0^+} S_1 = 0$; the argument showing $\lim_{t \to 0^+} S_2 = 0$ is the same.

$$|S_1| \leq \sum_{r=1}^{\infty} |g(r)| \sum_{m=\infty}^{\infty} I_m I_{m-r} \int_{c_1}^{(0+)} e^u u^{-|m|} du$$

$$\leq e^{-K} \sum_{r=1}^{\infty} |g(r)| \sum_{m=\infty}^{\infty} I_m I_{m-r} K^{-|m|} = e^{-K} \sum_{m=\infty}^{\infty} I_m K^{-|m|} \sum_{r=1}^{\infty} g(r) I_{m-r}$$

$$\leq e^{-K} \sum_{m=\infty}^{\infty} I_m K^{-|m|} m! |m| \left(\frac{2}{x} - 1 \right)^{-|m|} = e^{-K} \sum_{m=\infty}^{\infty} I_m m! |m| ! = e^{-KB}$$

where $B = \sum_{m=\infty}^{\infty} I_m |m| ! < 9$. Therefore $S_1 \leq e^{-KB} \to 0$ as $t \to 0^+$.

It is essential to the proof that $K \to \infty$. This is not the case when $x \leq 2/3$. But in that event the sum (1.4), with $t = 0$, converges, and the proof that (1.4) inverts (1.3) is trivial. We therefore assume from now on that $x > 2/3$.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
The proof has now been reduced to showing that $S \to 0$ as $t \to 0^+$. To this end we make use of the formula [5, p. 441]

$$I_m(1)I_{r-m}(1) = \frac{2}{\pi} \int_0^{\pi/2} I_r(2 \cos \theta) \cos (2m - r) \theta d\theta.$$

We obtain, setting $u^{-t} = w$,

$$\frac{\pi}{2} S = \sum_{r=1}^{\infty} g(r) \sum_{m=-\infty}^{\infty} (-1)^m \int_0^{\pi/2} I_r(2 \cos \theta) \cos (2m - r) \theta d\theta \int_c \frac{e^u}{u} \frac{dw - |m| du}{w^2}$$

$$= \sum_{r=1}^{\infty} g(r) v(r, t).$$

Estimate of $v(r, t)$. Since $|w| < 1$ along the entire path C, we may write

$$v(r, t) = \int_C \frac{e^u}{u} \int_0^{\pi/2} I_r(2 \cos \theta) \left\{ \sum_{m=-\infty}^{\infty} (-1)^m w^m \cos (2m - r) \theta \right\} d\theta du.$$

$$\sum_{m=-\infty}^{\infty} (-1)^m w^{|m|} \cos(2m - r) \theta = \cos(r \theta) \frac{1 - w^2}{1 + 2w \cos 2 \theta + w^2}.$$

We now have

$$v(r, t) = \int_C \frac{e^u}{u} (1 - w^2) \int_0^{\pi/2} \frac{I_r(2 \cos \theta) \cos r \theta}{1 + 2w \cos 2 \theta + w^2} d\theta du.$$

The integral

$$Q_r(w) = \int_0^{\pi/2} \frac{I_r(2 \cos \theta) \cos r \theta}{1 + 2w \cos 2 \theta + w^2} d\theta$$

may be estimated as follows.

Replace $I_r(2 \cos \theta)$ by the sum (i) and interchange the order of summation and integration to obtain

$$\left\{ \sum_{s=0}^{\infty} \frac{1}{s!(r + s)!} \int_0^{\pi/2} \frac{(\cos \theta)^{r+s} \cos r \theta}{1 + 2w \cos 2 \theta + w^2} d\theta \right\}.$$

The integral appearing in (2.5) is now estimated by contour integration. It is easily verified that

$$\int_0^{\pi/2} (\cdots) d\theta = \frac{1}{4} \int_0^{2\pi} (\cdots) d\theta,$$

and so the standard substitution $\cos \theta = 1/2(z + 1/z)$, $z = e^{i\theta}$ yields
\[i 2^{r+2s+3} \int_0^{\pi/2} (\cdots) d\theta = \int_{|z|=1} \frac{(z^2 + 1)^{r+2s}(z^{2r} + 1)}{z^{2r+2s-1}(wz^4 + (1 + w^2)z^2 + w)} \, dz \]

\[= \int_{|z|=1} \rho_1(z) \, dz + \int_{|z|=1} \rho_2(z) \, dz \]

where

\[\rho_1(z) = \frac{(z^2 + 1)^{r+2s}}{z^{2s-1}(wz^4 + (1 + w^2)z^2 + w)}; \]

\[\rho_2(z) = \frac{(z^2 + 1)^{r+2s}}{z^{2r+2s-1}(wz^4 + (1 + w^2)z^2 + w)}. \]

Both \(\rho_1(z) \) and \(\rho_2(z) \) have poles at \(z=0 \) and at the zeros of \(wz^4 + (1 + w^2)z^2 + w \), that is, at \(z = \pm iw^{1/2}, \pm i/w^{1/2} \). The points \(\pm iw^{1/2} \) lie inside the unit circle, while \(\pm i/w^{1/2} \) lie outside.

Estimate of \(\int_{|z|=1} \rho_1(z) \, dz \). Let \(\alpha \) be a real positive number such that

\[\alpha < \inf_{w \in \mathbb{C}} \frac{1}{2} \left| w^{1/2} \right| = \frac{1}{2} \left(\frac{1}{x} - \frac{1}{2} \right)^{1/2}. \]

\[\left| \int_{|z|=1} \rho_1(z) \, dz \right| \leq \left| \int_{|z|=\alpha} \rho_1(z) \, dz \right| + \left| \text{Res} \, \rho_1(z) \right|_{z=\pm i w^{1/2}}. \]

\[\left| \text{Res} \, \rho_1(z) \right|_{z=\pm i w^{1/2}} = \frac{|1 - w|^{r+2s}}{2 |w^4| \left| 1 - w^2 \right|}, \]

\[\left| \int_{|z|=\alpha} \rho_1(z) \, dz \right| \leq 2\pi \alpha^{2} \frac{(\alpha^2 + 1)^{r+2s}}{\alpha^{2s}} M_1(w) \]

where \(M_1(w) = \sup_{|z|=\alpha} \left| wz^4 + (1 + w^2)z^2 + w \right|^{-1} \). \(M_1(w) \) certainly exists since the choice of \(\alpha \) assures that \(wz^4 + (1 + w^2)z^2 + w \) is bounded away from zero for \(|z| = \alpha \). Now, fix \(\alpha \) so small that \(x(\alpha^2 + 1) < 2 \).

Estimate of \(\int_{|z|=1} \rho_2(z) \, dz \). Let \(\beta \) be a real positive number such that

\[\beta > \sup_{w \in \mathbb{C}} \frac{2}{\left| w^{1/2} \right|} = \frac{2}{\left(\frac{1}{x} - \frac{1}{2} \right)^{1/2}}, \]

\[\left| \int_{|z|=1} \rho_2(z) \, dz \right| \leq \left| \int_{|z|=\beta} \rho_2(z) \, dz \right| + \left| \text{Res} \, \rho_2(z) \right|_{z=\pm i w^{1/2}}, \]

\[\left| \text{Res} \, \rho_2(z) \right|_{z=\pm i w^{1/2}} = \frac{|1 - w|^{r+2s}}{2 |w^4| \left| 1 - w^2 \right|}, \]
\[
\left| \int_{z=\beta} \rho_\beta(z) dz \right| \leq 2\pi \beta^2 \frac{(\beta^2 + 1)^{r+2s}}{\beta^{2r+2s}} M_2(w)
\]

where \(M_2(w) = \sup_{|z| < \beta} \left| w z^4 + (1 + w^2) z^2 + w \right|^{-1} \). The choice of \(\beta \) assures that \(M_2(w) \) exists. Now fix \(\beta \) so large that \(x(\beta^2 + 1)/\beta^2 < 2 \).

We are now ready to give the estimate of \(\nu(r, t) \).

\[
| \nu(r, t) | \leq \int_C \left| \frac{e^u}{u} \right| | 1 - w^2 | | Q_r(w) | | du |
\]

where

\[
Q(w) \leq \sum_{s=0}^{\infty} \frac{1}{s!(r+s)!2^{r+2s}} \left\{ \left| 1 - w \right|^{r+2s} + \frac{\pi (\alpha^2 + 1)^{r+2s} M_1}{\alpha^{2s-2}} + \frac{2\pi (\beta^2 + 1)^{r+2s} M_2}{\beta^{2r+2s-2}} \right\} .
\]

The estimate (2.6) enables us to write

\[
\sum_{1}^{\infty} | g(r) | | \nu(r, t) |
\]

\[
= \int_C \left| \frac{e^u}{u} \right| | 1 - w^2 | \left\{ \sum_{1}^{\infty} | g(r) | | Q_r(w) | \right\} du .
\]

The proof is now completed by breaking (2.7) into three parts corresponding to the three sums in (2.6). Call these parts \(T_1, T_2, \) and \(T_3 \). We give the details showing \(T_1 \to 0 \) as \(t \to 0 + \). The details for \(T_2 \) and \(T_3 \) are similar, and somewhat simpler after observing that \(M_1(w) \) and \(M_2(w) \) are bounded for \(u \in C \) (again by the choice of \(\alpha \) and \(\beta \)).

\[
T_1 = \int_C \left| \frac{e^u}{u} \right| | 1 - w^2 | \cdot \left\{ \sum_{1}^{\infty} | g(r) | \sum_{s=0}^{\infty} \frac{1}{s!(r+s)!2^{r+2s}} | 1 - w |^{r+2s} \right\} du .
\]

Since \((r+s)! \geq r!s!\) and since \(2^{2s}(s!)^2 \geq (2s)! \) we have

\[
\sum_{s=0}^{\infty} \frac{1}{s!(r+s)!2^{r+2s}} | 1 - w |^{r+2s} \leq \frac{1 - w}{1 - w^2} \sum_{s=0}^{\infty} \frac{| 1 - w |^{2s}}{(|w|^{1/2})^{2s}} \frac{1}{(2s)!} \leq \frac{1 - w}{1 - w^2} e^{1 - |w|/|w|^{1/2}},
\]

so that
\[T_1 \leq \int_C \frac{e^u}{u} e^{1-\frac{1}{2}|u|^{1/2}} \sum_1 \infty g(r) \frac{|1-w|^r}{2^r!} \, du \]
\[\leq A_1 \int_C \frac{e^u}{u} e^{1-\frac{1}{2}|u|^{1/2}} \frac{|1-w^{-t}|}{1-x/2 |1-w^{-t}|} \, du \]

where \(A_1 \) is a constant.

Break the path \(C \) into two parts, \(C^* \) and \(C_\ast \) as shown:

Given \(\epsilon > 0 \) choose \(t \) so small that there is a fixed positive number \(N < K \) such that

\[e^{-N} \int_{C^*} e^{1-\frac{1}{2}|u|^{1/2}} \frac{|1-w^{-t}|}{1-x/2 |1-w^{-t}|} \, du \leq \frac{\epsilon}{2} \]

and also

\[\sup_{u \in C^*} |1-w^{-t}| = |1-N^{-t}| \]

\[\leq \frac{\epsilon}{2} \left(\int_{C^*} \frac{e^u}{u} e^{1-\frac{1}{2}|u|^{1/2}} \frac{1}{1-x/2 |1-w^{-t}|} \, du \right)^{-1}. \]

This can be done by virtue of the fact that \(K \to +\infty \) as \(t \to 0^+ \) and the fact that the integrals in (2.8) and (2.9) are seen, by elementary estimates, to be bounded independently of \(t \). Thus \(T_1 < \epsilon \), and since \(\epsilon \) is arbitrary the assertion follows.

References