A THEOREM ON FACTORIZABLE GROUPS

WALTER FEIT

A group G is said to be factorizable if it contains proper subgroups H, K with the property that $G = HK$. Several results are known which state that G is not simple if H and K satisfy suitable assumptions. The following theorem and its corollaries are of a similar nature but apply only to groups of odd order. The proof is based on a theorem of H. Wielandt (see [2]) which generalized earlier results of W. Burnside and I. Schur.

Theorem. Let G be a group of odd order and let M be a maximal subgroup of G. Suppose that A is an abelian subgroup of G, which has at least one cyclic Sylow subgroup, such that $G = AM$. Then either G has prime order or G contains a proper normal subgroup N which is contained in either A or in M.

Proof. Assume that no proper normal subgroup of G is contained in M. Suppose first that $D = A \cap xMx^{-1} \neq \{1\}$, for some element x in G. Since A is abelian and since every subgroup of G conjugate to M is of the form yMy^{-1} for some element y in A, it follows that D is contained in every subgroup conjugate to M. Hence the intersection of all subgroups conjugate to M is a proper normal subgroup of G which is contained in M. This contradicts our assumption. Hence $A \cap xMx^{-1} = \{1\}$ for every element x in G.

Let π be the permutation representation of G induced by the subgroup M. As the kernel of π is contained in M, it follows from the assumptions that π is faithful. As M is a maximal subgroup of G, $\pi(G)$ is a primitive group of permutations. Since A intersects no
conjugate of M nontrivially, the restriction of π to A is the regular representation of A. Since G has odd order, $\pi(G)$ cannot be a doubly transitive permutation group. Hence $\pi(G)$ is a permutation group which satisfies the hypotheses of Wielandt’s theorem (see [2]). Consequently that theorem implies that A has prime order and is normal in G. The proof is completed by setting $N = A$.

Corollary 1. Let G be a group of odd order which can be represented in the form $G = HA$, where H and A are proper subgroups of G, and A is an abelian group with at least one cyclic Sylow subgroup. Then G is not simple.

Proof. Let M be a maximal subgroup of G which contains H. Then it is easily seen that all the hypotheses of the theorem are satisfied. Thus the result follows from the theorem.

The theorem also yields a result of T. Ikuta (see [1]).

Corollary 2. A group of odd order which contains a subgroup of prime index is either cyclic of prime order or is not simple.

Corollary 3. Let G be a group of odd order. Suppose that $G = HA$, where H is solvable and A is cyclic, then G is solvable.

Proof. The proof is by induction on the order g of G. The result is clearly true if G has prime order. Assume now that it has been proved for all groups of order less than g. If $G = H$ or $G = A$, the result is trivial. Hence it may be assumed that $H \neq G$, \{1\}. Any subgroup of G which contains H satisfies the same assumptions as G. Hence if M is a maximal subgroup of G which contains H, it follows from the induction assumption that M is solvable. The theorem now implies that G contains a normal subgroup N, such that N is contained in A or in M. In either case N is solvable. As G/N satisfies the same assumptions as G, the induction hypothesis yields that G/N is solvable. Consequently G is solvable as desired.

The assumption that G has odd order is essential in the theorem and all its corollaries, since the simple group of order 60 satisfies all the other hypotheses of the theorem and its corollaries.

Bibliography

Cornell University