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1. Introduction. Consider the system of real, autonomous, non-

linear differential equations

(1.1) x' = Tx + F(x),    where    F(x) = o(\ x\) as x —> 0,

where x is a vector, |x| the Euclidean length of x, F(x) a smooth

vector valued function for small |x|, and T a constant matrix with

eigenvalues 71, 72, • • ■   satisfying

(1.2) Re Tj ^ 0.

M. M. Peixoto has raised the question as to whether or not there

exists a topological mapping

(1.3) R: u = u(x)

of a vicinity of x = 0 onto a viciniy of w = 0 such that solution paths

of (1.1) are mapped onto solution paths of

(1.4) u' = Tu.

The object of this note is to answer this question in the affirmative

when F(x) is of class C2. (It can be mentioned that, even if F(x) is

analytic, there need not exist such a map R of class C1 with non-

vanishing Jacobian; [2].) The mapping (1.3) to be obtained below

maps solution paths of (1.1) into those of (1.4) preserving para-

metrizations.

The first part of the paper concerns the linearization of a local

homeomorphism of a Euclidean space into another of the same dimen-

sion. The second part concerns (1.1) or rather the "group" of homeo-

morphisms associated with (1.4). The reduction of the problem to

mappings is suggested by Sternberg [3].

2. Local homeomorphisms. Let u, u1, x, x1, X be (real) Euclidean

/¿-vectors and v, vl, y, y1, Y Euclidean ^-vectors. The first theorem

to be proved is the following:
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STRUCTURAL STABILITY OF DIFFERENTIAL EQUATIONS 611

(I) Let T: (x, y)—>(x\ y1) be a map of the form

(2.1) T: xl = Ax + X(x, y),        y1 = By + Y(x ,y),

where X, Y are of class C1,

(2.2) X, Y = o(\x\  + \y\) as (x,y)-+0,

A   and B  are  constant  matrices  with  eigenvalues a\, • • • ,  aß and

b\, • • ■ , bv, respectively, satisfying

(2.3) 0 <  | am\   < 1 <  | bn\   for 1 ^ m ^ p, 1 ^ w ^ v.

Then there exists a continuous, one-to-one map

(2.4) R:u=U(x,y),        v = V(x, y)

of a neighborhood of (x, y)=0 onto a neighborhood of (u, v)=0 such

that

(2.5) RTR-1 « L,

where L is the linear map

(2.6) L: u1 = Au,        v1 = Bv.

The case where J is a contraction T: x—>x1=Ax+X(x) is simpler

than that of (2.1). Actually, (I) implies a corresponding result for

such a map since T can be extended by letting yl = By.

The proof of (I) will be by the method of successive approxima-

tions and similar to the proof of (IV) in [2].

3. Proof of (I). The map R. After separate linear changes of the x

and y variables, it can be supposed that

(3.1) \A\   < a < 1, I B~l\   < i/b < 1,

where \A\ is the norm : sup \Ax\ for \x\ = 1, and a, b are constants.

Theorem (III) of [2] shows that there is no loss of generality in

assuming that the planes x = 0 and y = 0 are invariant, that is, that

(3.2) X(0, y) « Y(x, 0) - 0.

Hence, there is a constant K satisfying

(3.3) \X(x,y)\   £K\x\,        \ Y(x,y)\   £K\y\.

Let r>0 be an arbitrarily small, fixed, positive number. It can be

supposed that J is a Cl, one-to-one map of the entire (x, y)-space

onto the (xl, y^-space and that

(3.4) X(x,y) = Y(x,y) m 0 if   | x\2 + \ y\2 ^ r2.
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For, in (2.1), X and Y can be replaced by X(x, y)<p(|x| 2+|y|2) and

Y(x, y)<p(|x| 2+|y|2), respectively, where <p=(p(t) is a C1 function of

a real variable /, okt<«>, satisfying </>(/) = \ for 0^t^r/2, cp(t)=0

for t^r and \d<i>/dt\ g 3/r. If |x|2 + |y|2 ^ r2, then

¿>{X(x, y)(p(|x| 2+|y| 2)}/dx'=(j>dX/dxi+2x'Xd4>/dt is majorized by

|dX/dx'| +6|X|, which has an arbitrarily small bound if r>0 is

sufficiently small. Since the same is true for all partial derivatives of

X<p and Ftp, it is clear that the mapping T obtained by replacing

X, Y by X(f>, Y<p has the desired properties.

Note that the constant K in (3.3) can be chosen arbitrarily small if

r>0 in (3.4) is sufficiently small. Hence it can be supposed that

(3.5) M   aa\x\, |y»|   ^ b\ y\ .

Let the inverse of (2.1) be

(3.6) T-1: x = A-htl + Xi(x\ y1),       y = B~xy + Fi(xS y1),

so that, by virtue of (2.1),

(3.7) X(x, y) = - AXi(x\ y1),       Y(x, y) = - BYi(x\ y1).

The functions Xi, Yi satisfy the analogues of (2.2), (3.2), (3.3) and

(3.4).
Let the desired relation (2.5) be written as

(3.8) LR = RT.

This is equivalent to the functional equation for V given by

(3.9) BV(x, y) = V(Ax + X(x, y),By+ Y(x, y))

and an analogous one for U which, in terms of (x1, y1) variables, is

(3.10) U(x\ y1) = AU(A~1x1 + X^x1, y1), B~Y + Yx(x\ y1)).

A solution V(x, y) of (3.9) will be obtained by successive approxi-

mations. Put

(3.11„)    F0(x,y) = y,

(3.11n)    Vn(x, y) = B-Wn-i(Ax + X(x, y), By + Y(x, y))

for « = 1,2, • • • . Let

(3.12) V"(x, y) = Vn(x, y) - Vn-i(x, y) for « = 1, 2, • ■ • ,

so that, for « = 2, 3, • • ■ ,

(3.13) V"(x, y) = B-Wn~l(Ax + X(x, y), By + V(x, y)).

By (3.110) and (3.11i), it follows that

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



i960] STRUCTURAL STABILITY OF DIFFERENTIAL EQUATIONS 613

(3.14) Vl(x, y) = B~1Y(x,y).

It will be shown by induction that there exist positive numbers

0(<1), 5(<1), Jiisuch that

(3.15) | Vn(x, y)\   á K18n\y\s

for w=l, 2, • • • . That such an inequality is valid for w=l follows

from (3.3), (3.4) and (3.14). Suppose that (3.15) holds for a given

»èl. By (3.1) and (3.13), | V"+i(x, y)\ ^b~iK18"\By+ Y\>. It is
clear from (3.3) that there exists a constant 6i>0 such that | By+ Y\

^h\y\. Let 5>0 be so small that 8 = b~lbl<\. Then | Vn+1(x, y)\

:£ JCi0n+1|y|a. This completes the verification of (3.15) for

w=l, 2, • • • .

It follows from (3.15) that Vo, Vi, • • • converges (uniformly on

bounded (x, y)-sets) to a continuous function V satisfying (3.9).

Similarly the successive approximations

(3.16o)   Uo(x\ y1) = x\

(3.16K)   Un(x\y') = AUn-1(A-W + X^yi), B~Y + Pif*1, y1))

for w=l, 2 • • • converge to a continuous solution U of (3.10). The

functions U(x, y), V(x, y) define a continuous map R, for all (x, y)

satisfying (3.8).

4. Proof of (I) completed. It remains to show that R is one-to-one

(in which case, (2.5) is a consequence of (3.8)). The proof that R is

one-to-one, if r>0 is sufficiently small, will depend on

(4.1) U(x, y) = x if ¡ x\  ^ r/a   and    V(x, y) ■■ y if | y\ à r,

(4.2) U(x, y) = 0 if x = 0    and    V(x, y) = 0 if y = 0.

These relations follow from the definitions (3.11) and (3.16) in view

of (3.2), (3.4) and (3.5).

Suppose, if possible, that R is not one-to-one, so that there exists

a pair of points (xi, yi), (x2, y2) such that

(4.3) R(xu yi) = R(x2, y2)    but    (xu y7) ^ (X2, y2).

It follows from (3.8) and a simple induction that

(4.4) R(x", y\) = R(x"2, y2) for w = 0, ± 1, • • • ,

where (xj, y") = Tn(x¡, y¡). Since T is one-to-one,

(4.5) (xï, yl) ^ (xn2, y2) for w = 0, 1, • • • .

Suppose that
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(4.6) | *i| , | yi| , | *s| , | yt\  9* 0.

It will be clear from the arguments to follow that if one of these in-

equalities fails to hold, then (4.4) implies Xi=x2 = 0, yi=y2 = 0.

In view of (4.6) and (3.5), it can be supposed that |xi| ^r/a,

|x2| ^r/a (for otherwise (x,-, y¡) can be replaced by (xj~k, yyk) where

k is a large, fixed positive integer). Hence (4.1) and (4.3) show that

(4.7) xi = x2    and   yi ^ y2.

For w = 0, 1, ■ • • , put

(4.8) i   =  I x2 — xi | ,       t   =  \ y2 — yi\ ;

so that, by (4.5) and (4.7),

(4.9) s° = 0,       /V0    and   sn + tn > 0.

It will be shown that if r>0 in (3.4) had been chosen sufficiently

small, then, for « = 0, 1, • • • ,

(4.10) 0 ^ s" ^ /".

The relation (3.4) and the argument following it show that the par-

tial derivatives of X, Y have arbitrarily small bounds if r>0 is

sufficiently small. Suppose, therefore, that

| X(x, y) - X(x*, y*)\,    \ Y(x, y) - Y(x*, y*) \

^ e( | x — x* |  + | y — y* | )

for all (x, y), (x*, y*) and that e>0 is so small that a + 2e<l and

b — 2e>l. If (4.10) holds for some fixed «, then

sn+1 ^ asn + es" + et" g (a + 2e)tn ^ tn,

¿n+l   ^   btn _  fSn _  ((n  ^   (0 -  2í)f ^  ¿",

so that s"+1gi"+1. Hence (4.10) holds for « = 0, 1, • • • .

In view of (4.6) and (3.5), |yj| 2ïr and \yl\ ^r for large «. But

then (4.1) and (4.4) show that y" = yl, that is, in = 0. By (4.10),

s" = tn = 0. But this contradicts the last part of (4.9). Consequently,

(4.3) cannot hold and (I) is proved.

5. Differential equations. In (1.1), let F(x) be of class C1. Let the

general solution of (1.1) passing through (x, y) at x = 0 be given by

x(t) =£(¿> x)- Then £(/, x) is of class C1 (since F is) and

(5.1) £(¿, x) — ßTtx + X(t, x),    where    X = o( | x | )        as x —> 0,

(for t fixed). Consider the set of transformations
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(5.2) T>: x< = |(i, x) = eTt + X(t, x).

They satisfy

(5.3) T'T' = T'+< for small \x\ .

(II) Jw the system of differential equations (1.1), let F(x) be of class

C2 for small \x\ and let the eigenvalues of T satisfy (1.2). Let x(t)

= £(i, x) be the solution of (1.1) satisfying x(0) =x. Then there exists a

continuous, one-to-one map (1.3) of a neighborhood of x = 0 onto a

neighborhood of w = 0 such that RT'R-1 is the linear map

(5.4) L':u' = eT'u.

By Theorem (I) just proved, there is a topological map R\: x—>u

of a vicinity of x = 0 onto a vicinity of m = 0 such that S' = RiT'Rr1

satisfies S1 = L1 (hence, 5n = L" for w = 0, +1, • • • ). According to an

observation of Sternberg [3, p. 817], the continuous map

(5.5) R2 =  f L-'S'dt
J 0

then satisfies L'R2 = R2St, so that L'R = RT> if R = R2R1. Thus (II)

would be proved (for F(x) of class C1) if it could be verified that R2 is

one-to-one (for small |x| ). Since I have not been able to give a veri-

fication of this, the proof of (II) below will involve a detour. This

detour necessitates the assumption that F(x) is of class C2, rather

than of class Cl.

The role of the assumption that F(x) is of class C2 is to assure the

existence of a change of variables of class C1 transforming (1.1) into a

new system which is linear on each of the invariant manifolds con-

sisting of solution paths reaching the origin for / = + ». This is used

to obtain the relation St = L' on these invariant manifolds.

It will be verified in §8 that (II) remains correct if F(x) is only

assumed of class C1 if the real parts of the eigenvalues y¡ of T are

of the same sign, say

(5.6) Re y¡ < 0.

It will remain undecided whether or not this is the case without the

assumption (5.6).

6. Proof of (II). Preliminary changes of variables. It will always

be assumed that the vectors u, v,x,y, • ■ ■ occurring below are small

in magnitude.

It will be supposed that the real parts of the eigenvalues of V are

not all of the same sign. (The proof for the other case is implicit in
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the proof to be given; cf. also §8 below.)

After a linear change of variables and a change of notation, it can

be supposed that the system of differential equations to be considered

is of the form

(6.1) x' = Tx + F(x, y),        y' = Ay + G(x, y),

where x is a p.-vector, y a ^-vector, V and A constant matrices with

eigenvalues yj, 5* satisfying

(6.2) Re7y<0,        Re 5* > 0,

respectively, F and G are of class C2 for small |x|, |y| and

(6.3) F,G = o(\x\  + \y\)    as    |*|+|y|-»0.

It can also be supposed that there exists a constant e>0 such that

(6.4) x-Tx ^ — c\ x\2,        y-Ay ^ c\ y\2,

where the dot denotes scalar multiplication.

Let the analogue of (5.2), in the present notation, be

(6.5) T': x* = eT'x + X(t, x, y),        y* = eAly + Y(t, x, y);

so that x(t)=x', y(t)=y' is the solution of (6.1) determined by the

initial condition x(0) =x, y(0) =y. The functions X, Y are of class C2

and satisfy X, F=o(|x| +|y|) as |x| + |y|—>0 for fixed t.

After a C2 change of variables, which leaves the origin fixed and

which has a Jacobian matrix reducing to the unit matrix at the origin,

it can be supposed that F(0, y)=G(x, 0)=0. Thus the planes x = 0

and y = 0 are invariant, so that X(t, 0, y)= Y(t, x, 0) =0. (The exist-

ence of such a change of variables of class C1, when F, G is of class C1,

follows from [l, p. 333]. This result can be easily extended to the

desired one. The desired result is implied directly by Theorem (III) of

[2] since the set of points (x, y) satisfying T'(x, y)—>(0, 0) as i—>oo

or t—*— °° is not changed if the continuous variable / is replaced by

a discrete variable « = 0, ±1, • • • .)

According to Theorem (II) of [2], there exists a C1 change of vari-

ables, say Ri, with the properties that it leaves the planes x = 0 and

y = 0 fixed, it has a Jacobian matrix reducing to the unit matrix at

the origin, and the map S' = RiT'Rr1 satisfies S1 = L1 on the invariant

manifolds x = 0 and y = 0.

Let i?2 be defined by (5.5). Then (5.5) is of class C1 with a Jacobian

matrix reducing to the unit matrix at the origin. It is readily seen

that L'Rî^R^S' on the invariant manifolds x = 0 and y = 0; cf. [3,

p. 817]. Put Ra = R*Ri, so that R0TtRöl = Lt on x = 0 and on y = 0.
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Make the change of variables (x, y)—>Ro(x, y). Let the new vari-

ables be called (x, y) again, let (6.1) be the new set of differential

equations and let RoT'Ro"1 be renamed T'.

The new functions F, G have all of the properties mentioned above

except that they are only continuous (instead of class C2) and, in

addition,

(6.6) J = G = 0 if   |*| \y\   =0.

The new functions X, Y have all of the properties mentioned above

except that they are only of class C1 (instead of class C2) and, in addi-

tion,

(6.7) X = F = 0   if    | * J j y |   =0.

7. Proof of (II) completed. By Theorem (I) and its proof above,

there exists a topological map

(7.1) Q: x = f(u, v),        y = g(u, v)

of a vicinity of (u, v) = (0, 0) onto a vicinity of (x, y) = (0, 0) such that

(7.2) Q-^K? = L1: m1 = eTu, v1 = eAv

and

(7.3) Q(u, v) m (f(u, v), g(u, v)) = (u,v)    if | « | | v |   = 0.

(The map Q is the inverse of the map R in (I).)

Consider the linear system of differential equations

(7.4) u' = Tu,        v' = Av.

By (6.4),

(7.5) u-u' iï — c\ u\2,        v-v' ^ c\ v\2;

so that I u\2 is decreasing and | v|2 is increasing along every solution

path not in the planes w = 0 and v = Q.

The solution of (7.4) beginning at (u, v) for i = 0 is given by u = u',

v = v', where

(7.6) L':ut = eTtu,       v< = euv.

If \u\ \v\ ¿¿0, there is a unique i-value, say t = a(u, v), such that

u'\ =\v'\   if t = a. The function a(u, v) is continuous on the set

u\  \v\ 7^0.

Define a map (u, v)^>(x, y) as follows:

(7 7) P- ̂ '^ = ^'^ if I «M»l   = °»
" (x, y) = T-°QL"(u, v)       if | u \ \ v |   ^ 0,
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where a = a(u, v). It is clear that (7.7) is defined for small \u\, \v\

and is continuous for |w|   |»| 5^0.

In order to clarify the meaning of (7.7), note that the first part

means that P is the identity map on the planes u = 0 and v = 0. Since

(7.2) implies that Q~1TnQ = Ln for « = 0, ±1, •• -, the last part of

(7.7) means that P = Q on the cone C: \u\ =\v\ and its iterates LnC

for « = 0, +1, • • • , where a— — 8.

It will first be verified that

(7.8) T-*PL*(u,v) = P(u,v).

This is clear if \u\ \v\ =0 from (7.3), the first part of (7.7), and the

fact that T' = L' on the planes « = 0 and v = 0. If \u\ \v\ ¿¿0, then
a(L'(u, v))=a(u, v)-t, so that PL'(u, v) = { T-^-t^QLa~t}Lt(u, v).

Thus (7.8) follows.

The map P is one-to-one. In order to see this, it is sufficient to

examine the action of P on \u\ \v\ ¿¿0. It is clear from (7.8) that

solution paths of (7.4) are mapped onto solution paths of (6.1). The

last part of (7.7) shows that P is one-to-one on any given solution

path of (7.4). Also, P sends different solution paths of (7.4) into

different solution paths of (6.1) since different solution paths of (7.4)

meet C: \u\ = \v\  in different points and P = Q is one-to-one on C.

Finally, it has to be verified that P is continuous at points where

¡i = 0or» = 0. In order to see this, note that

P(u, v) = T-a+nQLa-"(u, v)

for any integer «. Let n = n(u, v) be chosen so that O^a —«<1. If

(u, v) is near a plane u = 0 or v = 0, then L'(u, v) remains near the cor-

responding plane for 0^/^l. Also, Q is nearly the identity mapping

near these planes. Finally, T~' for O^t^l is approximately L~l near

these planes (since T~i = Lrl on these planes). It follows that P is

nearly the identity map near the planes u = 0 and v = 0. Since P is

the identity map on u = 0 and ^ = 0, the continuity of P follows.

Thus, R = P~l has the asserted properties and the proof of (II) is

complete.

8. Remark. If (5.6) holds, the proof of (II) can be given more

simply even if it is only assumed that F(x) in (1.1) is only of class C1.

After a linear change of variables, it can be supposed that

(8.1) x-Yx á - e\ x\2 ^ 0.

To every u satisfying 0<|«| ^r, there exists a unique number

a = ct(u) ^0 such that u' defined by

(8.2) L':u'=:eTtu
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satisfies \u'\ =r if t = a. Let a map u—>x be defined by

x = 0 if u — 0,
(8.3) P:

x = T-"Lau       if « ^ 0.

It can then be verified that i? = P_1 exists and has the desired proper-

ties.

9. The smoothness of R in (I). It is easy to see from the proof of

(J) that the map (2.4) is of class C1 at any point not on the invariant

manifolds. (It is not clear whether or not R"1 has the same property.)

The following example (cf. [2, Part IV]) shows that there need not

exist a linearizing map R which is of class C1 everywhere except at

the origin.

The system of three scalar differential equations

(9.1) x' = ax,        y' = (a — y)y + exz,        z' = — yz,

where a>7>0 and e^O, has the general solution

(9.2) Tl: x* = xeat,   y* = (y + exzt)e<-a—')t,    zt = ze—tl.

Consider the analytic map T=T1,

(9.3) T: x1 = ax,       y1 = ac(y + exz),       z1 = cz,

where a = ea and c = e~y, so that a>l>c>0 and ac>l. It is readily

verified that each of the maps

R: u ~ x,        v = y — exz log | x | /log a,        w = z,

and

R: u = x,        v = y — exz log | z | /log c,        w = z,

linearizes (9.3), in fact, (9.2) for all i. It turns out that the non-

existence of some derivatives of these maps at x = 0 or z = 0 cannot

be avoided.

It will be shown that if

(9.4) R~li x = f(u, v, w),      y = g(u, v,w),      z — h(u, v, w)

is a local homeomorphism linearizing (9.3), i/?ew either the partial de-

rivative gu(0, 0, w) fails to exist for all w^O or gw(u, 0, 0) fails to

exist for all u^O.
iii

The considerations below concern only v = 0 (and small ] u\ , \w\).

Write j(u, w) iorj(u, 0, w) if j=f, g, h. The relation (2.5) in the form

TR~1 = R~iL gives, for v = 0,

af — f(au, cw),       ac[g + efh] = g(au, cw),       ch = h(au, cw),
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where the argument of/, g, h on the left is (u, w). A simple induction

shows that anf=f(anu, c"w),

(9.5) anc"[g + nefh] = g(a"u, cnw),

and c"h = h(anu, c"w) for small \u\, \w\. The first of these relations

implies that/(0, w)=a~nf(0, c"w)—>0 as «—><». Hence/(0, to)=0.

Similarly, h(u, 0)=0. It then follows, from ac>\, that g(0, w)=0.

Multiply (9.5) by c~n and replace u by u/an to obtain

(9.6) ang(u/an, w) + ntf(u, c"w)h(u/an, w) = c~ng(u, c"w).

Suppose that gu(0, w), gw(u, 0) exist (for a fixed u and to), then

a"g(u/an, w)=an[g(u/an, w)—g(0, w)] = 0(l) and c~ng(u, Cw)

= c~n[g(u, c"w)—g(u, 0)]+c~"g(u, 0) = O(l)+c~ng(u, 0) as 8—»».

Thus (9.6) shows that c~"g(u, 0)=O(n). Since c<\, it follows that

g(u, 0)=0. But then (9.6) implies that/(w, Q)h(0, to)=0, which is

impossible for uw^O. For example, if f(u, 0)=0 and U5¿0, then

f = g = h = 0 when (w, d, to) is the point (u, 0, 0)^(0, 0, 0). This con-

tradicts the fact that R~1 is one-to-one. It follows that if g„(0, to)

exists for some toj^O, then gw(u, 0) does not exist for any «^0.
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