CONTINUED FUNCTION EXPANSIONS OF REAL NUMBERS

B. K. SWARTZ AND B. WENDROFF

1. Introduction. We present a theory of continued function expansions of numbers which contains the generalized continued fractions of B. H. Bissinger [1] and the generalized decimal representations of C. J. Everett [2]. The latter used the following algorithm for representing numbers as sequences of integers: for any \(\gamma \geq 0 \) let \(\gamma_0 = \gamma \), \(\gamma_{n+1} = f^{-1}(\gamma_n - a_n) \), where \(a_n = [\gamma_n] \) and \(f \) is strictly increasing and continuous from \([0, \rho]\) onto \([0, 1]\), \(\rho \) an integer. We generalize this, in particular, by admitting a wider class of functions than those of the form \(f^{-1}(x-n) \). O. W. Rechard [3] gave a necessary and sufficient condition that the correspondence between numbers and sequences resulting from Everett’s algorithm be 1-1. This condition appears in our theory as a simple functional relation similar to one considered by Schreier and Ulam [4].

2. The algorithm. The correspondence between numbers and sequences which we are going to describe depends on a collection of intervals and on functions defined on those intervals. More precisely

Definition. An algorithm frame, \(A \), consists of the following: an interval \(R \); a subset \(P \) of the integers containing at least two integers; a partition of \(R \) into disjoint intervals \(I_n, n \in P \); a subset \(P_0 \) of \(P \) containing at least two integers such that \(I = \bigcup_{n \in P_0} I_n \) is an interval; intervals \(M_n, n \in P \), homeomorphic to each other such that \(M_n \subseteq I_n \) and \(I_n - M_n \) consists of at most one point; and an interval \(M \) homeomorphic to each \(M_n \) such that \(\bigcup_{n \in P_0} M_n \subseteq M \subset I \).

It follows from the above definition that if \(\{ M_n, n \in P \} \) is part of an algorithm frame then either all the \(M_n \) are open intervals or all are closed on one end, not necessarily the same, because not all the \(I_n \) can be closed and the \(M_n \) are homeomorphic to each other. Also, if any interval is infinite at some end it is taken to be open at that end.

Definition. An algorithm basis consists of an algorithm frame \(A \) and a collection of homeomorphisms \(h_n, n \in P \), mapping \(M_n \) onto \(M \). We usually identify an algorithm basis by the couple \((A, h_n) \).

Corresponding to any algorithm basis we have the following algorithm for relating points in \(R \) to sequences (finite or infinite) of integers:

Presented to the Society, January 29, 1960; received by the editors October 9, 1959.

1 Work performed under A.E.C. Contract No. W-7405-Eng. 36.
Let \(x_0 \in R \).

\[
\{a(0) \text{ is determined by the requirement that } x_0 \in I_{a(0)} \}. \\
\]

\(a(0) : \)

\[
\left\{ \begin{array}{l}
\text{If } x_0 \in M_{a(0)}, \text{ stop, and represent } x_0 \text{ by the sequence of one element } \{a(0)\}. \\
\text{Since } x_0 \in M_{a(0)} \text{ we can let } x_1 = h_{a(0)}(x_0). \text{ Then } a(1) \text{ is determined by the requirement that } x_1 \in I_{a(1)}. \\
\text{Furthermore, } a(1) \in P_0 \text{ since } x_1 \in M \subseteq I.
\end{array} \right.
\]

\(a(1) : \)

\[
\left\{ \begin{array}{l}
\text{If } x_1 \in M_{a(1)}, \text{ stop, and represent } x_0 \text{ by the sequence of two elements } \{a(0), a(1)\}. \\
\text{Since } x_k-1 \in M_{a(k-1)} \text{ we can let } x_k = h_{a(k-1)}(x_{k-1}). \text{ Then } a(k) \text{ is determined by the requirement that } x_k \in I_{a(k)}, \text{ and } a(k) \in P_0.
\end{array} \right.
\]

\(a(k) : \)

\[
\left\{ \begin{array}{l}
\text{If } x_k \in M_{a(k)}, \text{ stop, and represent } x_0 \text{ by } \{a(0), \ldots, a(k)\}. \\
\end{array} \right.
\]

This algorithm contains the expansions considered by Bissinger and Everett. Let \(A B \) be the following algorithm basis:

\[
R = [0, \infty), \quad P = \{0, 1, 2, \ldots\}, \quad P_0 = \{1, 2, \ldots\}, \quad I_n = [n, n + 1), \\
M_n = (n, n + 1), \quad I = [1, \infty), \quad M = (1, \infty),
\]

and let \(h_n(x) = f^{-1}(x - n) \) for \(x \in (n, n + 1) \) where \(f \) is a continuous strictly decreasing function mapping \([1, \infty)\) onto \((0, 1)\). This contains Bissinger's expansions. Everett's expansions come from the algorithm basis \(A E \) given by:

\[
R = I = M = [0, p), \quad I_n = M_n = [n, n + 1), \\
\]

\[
P = P_0 = \{0, 1, \ldots, p - 1\},
\]

and \(h_n(x) = f^{-1}(x - n), x \in [n, n + 1) \) where \(f \) is continuous and strictly increasing from \([0, p]\) onto \([0, 1]\).

3. **1-1 Correspondence.** Given an algorithm basis \((A, h_n)\), the algorithm defines a function \(h \) from \(R \) into the space \(C \) of finite or infinite sequences of integers \(c = \{c(0), c(1), \ldots\} \) as follows: let \(x \)
yield \(c \) under the algorithm, then \(h(x) = c \). Let \(E \) be the set of all such functions. In general we will use the convention that if \(g \in E \) then the homeomorphisms in its algorithm basis are \(g_n \).

Definition. Let \((A, h_n), (B, g_n)\) be algorithm bases. The corresponding functions \(h \) and \(g \in E \) are said to be equivalent, written \(h \sim g \), if \(A \) and \(B \) are identical and if \(h_n \) has the same sense as \(g_n \) for each \(n \). (By this we mean that if \(h_n \) is monotone increasing so is \(g_n \) and if \(h_n \) is monotone decreasing so is \(g_n \). This is not meant to imply that the sense of \(h_n \) is independent of \(n \).)

Denote by \(C(h) \) the range of \(h \) for \(h \in E \).

The following theorems characterize the equivalent 1-1 functions in \(E \):

Theorem 1. If \(h \sim g \) and \(h \) is 1-1 onto \(C(h) \) then \(C(h) \subset C(g) \).

Corollary 1. If \(h \sim g \), a finite sequence is in \(C(h) \) if and only if it is in \(C(g) \).

Corollary 2. If \(g \) is 1-1, \(C(h) = C(g) \).

Notation. A sequence of functions \(h g \cdots k \) always means the composite function \(h(g(\cdots(k)\cdots)) \).

Theorem 2. Let \(g \) be 1-1 from \(R \) onto \(C(g) \) and let \(h \) have the same algorithm frame as \(g \). Then \(h \sim g \) and \(h \) is 1-1 from \(R \) onto \(C(g) \) if and only if there exists an increasing homeomorphism \(F \) from \(R \) onto \(R \), which also maps \(M_n \) onto \(M_n \) for all \(n \), such that \(h_n^{-1} = F^{-1} g_n^{-1} F \).

The following theorems are an application of Theorem 2 to bases \(AB \) and \(AE \), respectively.

Theorem 3. Let \((A, h_n)\) be an algorithm basis of the form \(AB \). Let \(h_n(x) = \bar{h}^{-1}(x-n) \). Then \(h \) is 1-1 if and only if there exists an increasing homeomorphism \(F \) mapping \([0, \infty)\) onto itself such that \(F(x) = n + F(x-n) \) for \(x \in [n, n+1) \) and \(\bar{h}^{-1}(\tau) = F^{-1}(1/F(\tau)) \) for all \(\tau \in (0, 1] \).

Theorem 4. Let \((A, h_n)\) be an algorithm basis of the form \(AE \). Let \(h_n(x) = \bar{h}^{-1}(x-n) \). Then \(h \) is 1-1 if and only if there exists an increasing homeomorphism \(F \) mapping \([0, p]\) onto itself such that \(F(x) = n + F(x-n) \) for \(x \in [n, n+1) \) and \(\bar{h}^{-1}(\tau) = F^{-1}(p \cdot F(\tau)) \) for all \(\tau \in [0, 1] \).

Reichard's condition is that \(h \) is 1-1 if and only if there exists an increasing homeomorphism \(G \) mapping \([0, 1]\) onto itself such that \(\bar{h}(y) = G^{-1}((n+G(y-n))/p) \). It is easily verified that this is equivalent to Theorem 4 (given \(G \), set \(F(y) = n + G(y-n) \), \(y \in [n, n+1) \), and given \(F \) set \(G(\tau) = F(\tau) \), \(\tau \in [0, 1] \)).

Proof of Theorem 1.
Lemma. Let \((A, f_n)\) be any algorithm basis and let \(c\) be any infinite sequence \(\{c(0), c(1), \ldots\}\) such that \(c(0) \in P, c(i) \in P_0\) for \(i > 0\). Let \(F_k = f_{c(0)}^{-1} \cdots f_{c(k-1)}^{-1}(M_c) = f_{c(0)}^{-1} \cdots f_{c(k-1)}^{-1}(M_{c(k)})\). Then \(f(x) = c\) if and only if \(x \in \cap_0 G_k\).

Proof of Lemma. \(F_k\) consists exactly of those points \(y\) which correspond, under \(f\), to sequences with at least \(k + 2\) entries, the first \(k + 1\) of which are \(c(0), \ldots, c(k)\), and the lemma follows immediately from this fact. Proceeding with the theorem, let \(h\) be \(1-1\) onto \(C(h)\), \(h \sim g\), and let \(h(x) = c\). If \(c = \{c(0)\}\), then \(g(x) = c\). If \(c = \{c(0), \ldots, c(k)\}\), \(k > 0\), then \(x = h_{c(0)}^{-1} \cdots h_{c(k-1)}^{-1}(y)\) where \(y \in I_{c(k)} - M_{c(k)}\) (note that in the definition of algorithm frame it was assumed that \(I_n - M_n\) consists of at most one point; the reason for this is apparent, for if there were more than one point \(k\) could not be \(1-1\)). Then if \(w = g_{c(0)}^{-1} \cdots g_{c(k)}^{-1}(y)\), \(g(w) = c\). If \(c\) is infinite, \(c = \{c(0), c(1), \ldots\}\), let
\[
H_k = h_{c(0)}^{-1} \cdots h_{c(k)}^{-1}(M) = h_{c(0)}^{-1} \cdots h_{c(k-1)}^{-1}(M_{c(k)}), \quad G_k = g_{c(0)}^{-1} \cdots g_{c(k)}^{-1}(M) = g_{c(0)}^{-1} \cdots g_{c(k-1)}^{-1}(M_{c(k)}),
\]
and
\[
r_k = g_{c(0)}^{-1} \cdots g_{c(k)}^{-1}h_{c(k)} \cdots h_{c(0)}.
\]
Clearly, \(H_{k+1} \subset H_k\), \(G_{k+1} \subset G_k\), \(G_k = r_k(H_k)\), and by the lemma, \(x = \cap_0^\infty H_k\). Furthermore, since \(h \sim g\), there are at most an even number of decreasing homeomorphisms in the composition of \(r_k\), therefore each \(r_k\) is strictly increasing from the interval \(H_k\) onto the interval \(G_k\). Also,
\[
r_k(H_{k+1}) = g_{c(0)}^{-1} \cdots g_{c(k)}^{-1}h_{c(k)} \cdots h_{c(0)}[h_{c(0)}^{-1} \cdots h_{c(k)}^{-1}(M_{c(k+1)})] = G_{k+1}.
\]
It follows from these facts that \(\cap_0^\infty G_k\) is nonempty. To show this we consider three cases.

Case 1. Each \(H_k\) is open. Then each \(G_k\) is open. Let \(H_k = (a_k, b_k)\), \(G_k = (\alpha_k, \beta_k)\). Since \(\cap_0^\infty H_k\) consists of the point \(x\), we must have that \(\lim a_k > a_k\) for all \(k\) and \(\lim b_k < b_k\) for all \(k\) (this also means that if \(b_0 = \infty\) some \(a_k\) must be finite, and similarly, if \(a_0 = -\infty\), some \(a_k\) is finite). Then there must be infinitely many indices \(k\) for which \(a_k < a_{k+1}\). Let \(a_k < a < a_{k+1}\). Then \(\alpha_k < r_k(a) < r_k(a_{k+1}) = \alpha_{k+1}\), and therefore if \(\alpha = \lim \alpha_k, \alpha > a_k\) for all \(k\). By the same kind of reasoning if \(\beta > \beta_k, \beta < \beta_k\) for all \(k\). Since \(\alpha \leq \beta\), \(\cap_0^\infty G_k = [\alpha, \beta]\), nonempty.

Case 2. Each \(H_k\) is closed on one end and \(k_0\) exists such that \(H_k\) is closed on the same end as \(H_{k_0}\), say the left for \(k \geq k_0\). The \(G_k\) must have the same property. Let \(H_k = [a_k, b_k], G_k = [\alpha_k, \beta_k], k \geq k_0\). By the
same reasoning as in Case 1 if \(\beta = \lim \beta_k, \beta < \beta_k \) for all \(k \), therefore \(\bigcap_{0}^{\infty} G_k = \bigcap_{0}^{\infty} [\alpha_k, \beta] \) which is nonempty.

Case 3. Each \(H_k \) is closed on one end but no \(k_0 \) as in Case 2 exists. Then it is easily seen that \(\bigcap_{0}^{\infty} G_k = \bigcap_{0}^{\infty} G_k \) which is nonempty. Since in all cases \(\bigcap_{0}^{\infty} G_k \) is nonempty, there exists \(y \in R \) such that \(g(y) = c \), which completes the proof.

The proof of Corollary 1 is essentially contained in the analysis of finite sequences given above. Corollary 2 is immediate.

Proof of Theorem 2. Let \(h \sim g \) and both be 1-1 onto \(C(h) = C(g) \). Let \(x \in R \). The following function \(F \) is 1-1 from \(R \) onto \(R \); if \(h(x) = c \) then \(y = F(x) \) if \(g(y) = c \). Since each interval \(M_n \) consists exactly of those points which correspond under the algorithm to sequences containing at least two entries, the first of which is \(n \), \(F \) maps \(M_n \) onto \(M_n \). If \(h(x) = \{c(0)\} \), then \(F(x) = x \) so \(F \) maps \(I_n \) onto \(I_n \). To see that \(F \) is strictly increasing, let \(x < \hat{x}, h(x) = c, h(\hat{x}) = d \). Define the length \(l \) of \(c \) as follows: if \(c = \{c(0), \ldots, c(k)\} \), then \(l = k \), and if \(c \) is infinite \(l = \infty \). Let \(l \) be the length of \(d \). There are two cases to consider.

Case 1. There exists an integer \(k \leq \min(l, l) \) such that \(c(i) = d(i), i < k, \) and \(c(k) \neq d(k) \). If \(k = 0 \), since \(x \in I_{c(0)}, \hat{x} \in I_{d(0)} \), we must have that \(I_{c(0)} \) is to the left of \(I_{d(0)} \). Since \(F(x) \in I_{c(0)} \), \(F(\hat{x}) \in I_{d(0)} \), \(F(x) < F(\hat{x}) \). If \(k > 0 \) then we can write

\[
x = h_{c(0)}^{-1} \cdots h_{c(k-1)}^{-1}(x_k)
\]
for some \(x_k \in I_{c(k)} \),

\[
\hat{x} = h_{c(0)}^{-1} \cdots h_{c(k-1)}^{-1}(\hat{x}_k)
\]
for some \(\hat{x}_k \in I_{d(k)} \),

\[
F(x) = g_{c(0)}^{-1} \cdots g_{c(k-1)}^{-1}(y_k)
\]
for some \(y_k \in I_{c(k)} \)

\[
F(\hat{x}) = g_{c(0)}^{-1} \cdots g_{c(k-1)}^{-1}(\hat{y}_k)
\]
for some \(\hat{y}_k \in I_{d(k)} \).

Let \(h_{c(0)}^{-1} \cdots h_{c(k-1)}^{-1} \) be increasing. Then \(x_k < \hat{x}_k, I_{c(k)} \) is to the left of \(I_{d(k)} \), \(y_k < \hat{y}_k \) and therefore \(F(x) < F(\hat{x}) \) since \(g_{c(0)}^{-1} \cdots g_{c(k-1)}^{-1} \) is also increasing. If \(h_{c(0)}^{-1} \cdots h_{c(k-1)}^{-1} \) is decreasing then \(x_k > \hat{x}_k, I_{c(k)} \) is to the right of \(I_{d(k)} \), \(y_k > \hat{y}_k \) and \(F(x) < F(\hat{x}) \) since \(g_{c(0)}^{-1} \cdots g_{c(k-1)}^{-1} \) is also decreasing.

Case 2. \(\min(l, l) \) is finite and \(c(i) = d(i), i \leq \min(l, l) \). For definiteness let \(l < l \). If \(l = 0 \) then \(x \in I_{c(0)} \) - \(M_{c(0)} \). Since \(x \in M_{c(0)}, x \) is the left end point of \(I_{c(0)} \). Then \(F(x) = x < F(\hat{x}) \) because \(F(\hat{x}) \in M_{c(0)} \). If \(l > 0 \) we can write

\[
x = h_{c(0)}^{-1} \cdots h_{c(l-1)}^{-1}(x_l), \quad x_l \in I_{c(l)} - M_{c(l)},
\]

\[
\hat{x} = h_{c(0)}^{-1} \cdots h_{c(l-1)}^{-1}(\hat{x}_l), \quad \hat{x}_l \in M_{c(l)},
\]

\[
F(x) = g_{c(0)}^{-1} \cdots g_{c(l-1)}^{-1}(x_l),
\]

\[
F(\hat{x}) = g_{c(0)}^{-1} \cdots g_{c(l-1)}^{-1}(\hat{y}_l), \quad \hat{y}_l \in M_{c(l)}.
\]
If $h_{(0)}^{-1} \cdots h_{(i-1)}^{-1}$ is increasing, $x_i < x_i$, therefore x_i is the left end-point of $I_{(i)}$, therefore $x_i < y_i$ and $F(x) < F(x)$. The proof is straightforward if $h_{(0)}^{-1} \cdots h_{(i-1)}^{-1}$ is decreasing. Thus F is strictly increasing and is therefore a homeomorphism of R onto R. Let $x \in M_n$. Then $x = h_n^{-1}(r)$ and $F(x) = g_n^{-1}(s)$. But $s = F(r)$ (this follows from the fact that if $h(x) = \{a_1, a_2, \cdots \}$ and $x = h_{(n)}(r)$ then $h(r) = \{a_1, a_2, \cdots \}$) therefore $F(x) = g_n^{-1}(F(h_n(x)))$ or $h_n^{-1} = F^{-1}g_n^{-1}F$. Conversely let $h_n^{-1} = F^{-1}g_n^{-1}F$ where F is an increasing homeomorphism from R onto R taking M_n onto M_n. Let $y = F(x)$. Then $h(x) = c$ if and only if $g(y) = c$, which completes the proof.

Proof of Theorem 3 and Theorem 4. Theorem 3 is obtained simply by applying Theorem 2 to this basis, using the inverse functional relation $h_n = F^{-1}g_n F$ and choosing $g_n(x) = 1/(x-n)$ (the corresponding g is the ordinary continued fraction algorithm which is well-known to be 1-1). Theorem 4 is obtained by taking $g_n(x) = p \cdot (x-n)$ (the corresponding g is the ordinary decimal expansion to the base p, which is 1-1). In both cases the functional relation implies that $F(x) - n$ is a function of $x - n$ only and therefore $F(x) - n = F(x - n)$ for $x \in [n, n+1)$.

Finally, let (A, h_n) be an algorithm basis giving rise to the function $h \in E$ and suppose h is 1-1. If $x \in R$ and c is an infinite sequence such that $h(x) = c$, there are two ways of interpreting the continued function expansion of x:

$$x = h_{(0)}^{-1}(h_{(1)}^{-1}(\cdots)).$$

The first is that for every $k \geq 0$, $x = h_{(0)}^{-1} \cdots h_{(k)}^{-1}(y)$ where $h(y) = \{c(k+1), \cdots \}$. The second is that $x = \lim_{k \to \infty} h_{(0)}^{-1} \cdots h_{(k)}^{-1}(y)$ for all $y \in M$, which follows from the fact that $x = \bigcap_0^\infty H_k$.

Bibliography

Los Alamos Scientific Laboratory, University of California, Los Alamos, New Mexico