ON ENTIRE FUNCTIONS DEFINED BY A DIRICHLET SERIES: CORRECTION

Q. I. RAHMAN

1. As pointed out by Sunyer i Balaguer in the preceding paper the proofs of Theorem 1 and of the second part of Theorem 2 of our paper [1] are faulty. We observe that if we impose the additional hypothesis that $M_S(\sigma) = \max_{t \in [-t_0, t_0]} |f(\sigma + it)| (a > D)$, is a nonincreasing function for sufficiently small σ then the proofs can be made to work. After correction Theorem 1 and the second part of Theorem 2 may be stated as follows.

Theorem A. If $M_S(\sigma) = \max_{t \in [-t_0, t_0]} |f(\sigma + it)| (a > D)$, is a nonincreasing function for sufficiently small σ then the lower order λ_S of $f(s)$ in each horizontal strip $S(\pi a)$, with $a > D$, is equal to the lower order λ of $f(s)$.

Theorem B. If $h = \infty$, $M_S(\sigma) = \max_{t \in [-t_0, t_0]} |f(\sigma + it)| (a > 0)$ is a nonincreasing function for sufficiently small σ then the lower type τ_S of $f(s)$ in each horizontal strip $S(\pi a)$, with $a > 0$, satisfies $\tau_S \geq e^{-\rho a^2}$.

2. Proof of Theorem A. In the notations of [1], $\sigma_j^* = \sigma_j + k_j$, where $|k_j| \leq \pi a$. By hypothesis $M_S(\sigma) = \max_{t \in [-t_0, t_0]} |f(\sigma + it)| (a > D)$ is nonincreasing for sufficiently small σ and therefore for $\sigma_j < \sigma_j^*$ [1, p. 215, line 3 (correcting the obvious misprint)]

$$
\log M_S(\sigma_j - \pi a) \geq \log M_S(\sigma_j^*) \geq \log \mu(\sigma_j + P) - K > \log M(\sigma_j + P + \epsilon) - \log K_1 - K.
$$

We can now conclude that $\lambda_S \geq \lambda$. The fact that $\lambda_S \leq \lambda$ completes the proof.

Proof of Theorem B. $M_S(\sigma) = \max_{t \in [-t_0, t_0]} |f(\sigma + it)| (a > 0)$ is by assumption a nonincreasing function for sufficiently small σ and therefore for $\sigma_j < \sigma_j^*$ [1, p. 215, line 18]

$$
\frac{\log M_S(\sigma_j - \pi a)}{e^{-\rho a(\sigma_j - \pi a)}} \geq \frac{\log M_S(\sigma_j^*)}{e^{-\rho a(\sigma_j - \pi a)}} > e^{-\rho(\pi a + \epsilon')} \frac{\log M(\sigma_j + \epsilon' + \epsilon)}{e^{-\rho(\sigma_j + \epsilon' + \epsilon)}} - \frac{\log K_1 + K}{e^{-\rho a(\sigma_j - \pi a)}}.
$$

It follows that $\tau_S \geq e^{-\rho a^2}$.

Received by the editors October 9, 1959.
By the method of Sunyer i Balaguer [see Theorem A of the preceeding paper] Theorem B can be improved and we can prove:

Theorem C. Under the conditions of Theorem B, $\tau_S = \tau$.

The following printing mistake in [1] may be noted:
In line 21 on page 215 $e^{(t_1-t')e}$ may be corrected to read $e^{(k_1-k)'}$.

Reference

Northwestern University

The Universal Representation Kernel of a Lie Group

G. Hochschild

Let G be a connected real Lie group. The universal representation kernel, K_G, of G is defined as the intersection of all kernels of continuous finite dimensional representations of G. Evidently, K_G is a closed normal subgroup of G, and it is known from a theorem due to Goto (cf. [1, Theorem 7.1]) that G/K_G has a faithful continuous finite dimensional representation. Thus K_G is the smallest normal closed subgroup P of G such that G/P is isomorphic with a real analytic subgroup of a full linear group. The known criteria for the existence of a faithful representation lead to a determination of K_G which we wish to record here.

Suppose first that G is semisimple. Let \mathfrak{g} denote the Lie algebra of G. Let C stand for the field of the complex numbers, and denote by \mathfrak{g}^C the complexification of \mathfrak{g}, i.e., the semisimple Lie algebra over C that is obtained by forming the tensor product, over the real field, of \mathfrak{g} with C. Denote by $S(\mathfrak{g})$ and $S(\mathfrak{g}^C)$ the simply connected Lie groups whose Lie algebras are \mathfrak{g} and \mathfrak{g}^C, respectively. The injection $\mathfrak{g} \to \mathfrak{g}^C$ is the differential of a uniquely determined continuous homomorphism γ of $S(\mathfrak{g})$ into $S(\mathfrak{g}^C)$. The kernel P of γ is a discrete central subgroup of $S(\mathfrak{g})$. Let ϕ denote the covering epimorphism of $S(\mathfrak{g})$ onto G. We claim that $K_G = \phi(P)$, i.e., the universal representation kernel of the semisimple connected Lie group G is the image, under the universal covering epimorphism, of the kernel of the canonical homomorphism $S(\mathfrak{g}) \to S(\mathfrak{g}^C)$.

Received by the editors September 18, 1959.