ON ENTIRE FUNCTIONS DEFINED BY A DIRICHLET SERIES: CORRECTION

Q. I. RAHMAN

1. As pointed out by Sunyer i Balaguer in the preceding paper the proofs of Theorem 1 and of the second part of Theorem 2 of our paper [1] are faulty. We observe that if we impose the additional hypothesis that \(M_S(\sigma) = \max_{|t-t_0| \leq \pi a} |f(\sigma + it)| (a > D) \), is a nonincreasing function for sufficiently small \(\sigma \) then the proofs can be made to work. After correction Theorem 1 and the second part of Theorem 2 may be stated as follows.

Theorem A. If \(M_S(\sigma) = \max_{|t-t_0| \leq \pi a} |f(\sigma + it)| (a > D) \), is a nonincreasing function for sufficiently small \(\sigma \) then the lower order \(\lambda_S \) of \(f(s) \) in each horizontal strip \(S(\pi a) \), with \(a > D \), is equal to the lower order \(\lambda \) of \(f(s) \).

Theorem B. If \(h = \infty \), \(M_S(\sigma) = \max_{|t-t_0| \leq \pi a} |f(\sigma + it)| (a > 0) \) is a nonincreasing function for sufficiently small \(\sigma \) then the lower type \(\tau_S \) of \(f(s) \) in each horizontal strip \(S(\pi a) \), with \(a > 0 \), satisfies \(\tau_S \leq e^{-\pi a \tau} \).

2. Proof of Theorem A. In the notations of [1], \(\sigma_j^* = \sigma_j + k_j \), where \(|k_j| \leq \pi a \). By hypothesis \(M_S(\sigma) = \max_{|t-t_0| \leq \pi a} |f(\sigma + it)| (a > D) \) is nonincreasing for sufficiently small \(\sigma \) and therefore for \(\sigma_j < \sigma' \) [1, p. 215, line 3 (correcting the obvious misprint)]

\[
\log M_S(\sigma_j - \pi a) \geq \log M_S(\sigma_j^*) \geq \log \mu(\sigma_j + P) - K > \log M(\sigma_j + P + \epsilon) - \log K_1 - K.
\]

We can now conclude that \(\lambda_S \geq \lambda \). The fact that \(\lambda_S \leq \lambda \) completes the proof.

Proof of Theorem B. \(M_S(\sigma) = \max_{|t-t_0| \leq \pi a} |f(\sigma + it)| (a > 0) \) is by assumption a nonincreasing function for sufficiently small \(\sigma \) and therefore for \(\sigma_j < \sigma'' \) [1, p. 215, line 18]

\[
\frac{\log M_S(\sigma_j - \pi a)}{e^{-\rho_S(\sigma_j - \pi a)}} \geq \frac{\log M_S(\sigma_j^*)}{e^{-\rho_S(\sigma_j - \pi a)}} \geq e^{-\rho(\pi a + \epsilon + \epsilon')} \log M(\sigma_j + \epsilon + \epsilon) - \log K_1 + K.
\]

It follows that \(\tau_S \leq e^{-\pi a \tau} \).

Received by the editors October 9, 1959.

624
By the method of Sunyer i Balaguer [see Theorem A of the preceding paper] Theorem B can be improved and we can prove:

Theorem C. Under the conditions of Theorem B, \(\tau_S = \tau \).

The following printing mistake in [1] may be noted:
In line 21 on page 215 \(e^{(z_1 - z') - t} \) may be corrected to read \(e^{(k_1 - z' - t)} \).

Reference

Northwestern University

THE UNIVERSAL REPRESENTATION KERNEL OF A LIE GROUP

G. HOCHSCHILD

Let \(G \) be a connected real Lie group. The universal representation kernel, \(K_\sigma \), of \(G \) is defined as the intersection of all kernels of continuous finite dimensional representations of \(G \). Evidently, \(K_\sigma \) is a closed normal subgroup of \(G \), and it is known from a theorem due to Goto (cf. [1, Theorem 7.1]) that \(G/K_\sigma \) has a faithful continuous finite dimensional representation. Thus \(K_\sigma \) is the smallest normal closed subgroup \(P \) of \(G \) such that \(G/P \) is isomorphic with a real analytic subgroup of a full linear group. The known criteria for the existence of a faithful representation lead to a determination of \(K_\sigma \) which we wish to record here.

Suppose first that \(G \) is semisimple. Let \(\mathfrak{G} \) denote the Lie algebra of \(G \). Let \(C \) stand for the field of the complex numbers, and denote by \(\mathfrak{G}^C \) the complexification of \(\mathfrak{G} \), i.e., the semisimple Lie algebra over \(C \) that is obtained by forming the tensor product, over the real field, of \(\mathfrak{G} \) with \(C \). Denote by \(S(\mathfrak{G}) \) and \(S(\mathfrak{G}^C) \) the simply connected Lie groups whose Lie algebras are \(\mathfrak{G} \) and \(\mathfrak{G}^C \), respectively. The injection \(\mathfrak{G} \to \mathfrak{G}^C \) is the differential of a uniquely determined continuous homomorphism \(\gamma \) of \(S(\mathfrak{G}) \) into \(S(\mathfrak{G}^C) \). The kernel \(P \) of \(\gamma \) is a discrete central subgroup of \(S(\mathfrak{G}) \). Let \(\phi \) denote the covering epimorphism of \(S(\mathfrak{G}) \) onto \(G \). We claim that \(K_\sigma = \phi(P) \), i.e., the universal representation kernel of the semisimple connected Lie group \(G \) is the image, under the universal covering epimorphism, of the kernel of the canonical homomorphism \(S(\mathfrak{G}) \to S(\mathfrak{G}^C) \).

Received by the editors September 18, 1959.