VARIATIONAL COMPLETENESS FOR COMPACT
SYMMETRIC SPACES

ROBERT HERMANN

We prove the following theorem: Let K be a connected symmetric
subgroup of the group of isometries of a compact connected globally
Riemannian symmetric space M. Then, K acts in a variationally com-
plete manner on M. (We refer to the work of R. Bott and H. Samelson
[1; 2] for a definition of this concept and applications to topology.)

Let G be a compact, connected Lie group, L a connected symmetric
subgroup of G. Bott and Samelson have proved the following: (1) L
acts in a variationally complete manner on G/L, the right coset space,
(2) L acts via the linear isotropy representation in a variationally
complete way on the tangent space at a point of G/L.

Our theorem then generalizes (1), but does not imply (2). The
method is essentially the same as Bott's [1], but uses a Lie algebra
approach in a stronger way. The proof then provides an exposition
of Bott's very important result from a Lie-algebra point of view.
Notice also that it suggests the general program of studying the
Jacobi-fields on a symmetric space as a problem of Lie algebra theory,
even in the nonvariational complete case.

1. We briefly recall Bott's notations: If $p \in M$, M_p denotes the
tangent space to M at p. Let $O_p(K)$ be the orbit of K at p, let
$O(K)_p$ be its tangent space at p, and let $g: R \rightarrow M$ be a geodesic of M begin-
ning at p, perpendicular to $O_p(K)$. Consider the vector space J_g
of Jacobi vector fields along g. A Jacobi field is a map $t \mapsto Y_t \in M_g(t)$ for
$t \in R$ that is a solution of the Jacobi Equation:

\[(1.1) \quad Y'' + R(X_t, Y_t)(X_t) = 0,\]

where $t \mapsto X_t$ is the tangent vector field to the geodesic g, $R(X_t, Y_t)$ is
the linear map $M_g(t) \rightarrow M_g(t)$ defined by the curvature form evaluated
at (X_t, Y_t) and $t \mapsto Y_t''$ is the second covariant derivative of the field
Y_t along g.

J^K_g denotes the focal subspace of J_g relative to $O(K)$, i.e. J^K_g
consists of those fields Y_t satisfying the initial conditions

Received by the editors December 18, 1958.

1 This research was supported in part by OOR, U. S. Army under contract no.
Da19-020-ORD-3778.
\[Y_0, Y_0' + T_g(Y_0) \in O(K)_p, \text{ where } T_g \text{ is a certain linear transformation } O(K)_p \to O(K)_p. \]

Hence, \(\dim J_g^K = \dim M. \)

Let \(K \) denote the Lie algebra of \(K \). There is a linear mapping \(\pi: K \to J_g^K \) such that for \(k \in K \), \(\pi(k) \) is obtained by restricting the vector field determined by \(A \) on \(J_g^K \) to \(g \).

By definition, to prove variational completeness we must show that every element of \(J_g^K \) that vanishes at some point of \(g \) must lie in \(\pi(K) \).

2. \(M \) is a coset space \(G/L \), where \(L \) is a compact, symmetric subgroup of a compact, connected Lie group \(G \). It evidently suffices to prove the theorem in the case where \(p \) is the identity coset.

We have a natural reduction \(G = L \oplus M \), with \([M, M] \subset L \) and \([L, M] \subset M \). (For the ideas and results of the differential geometry of symmetric spaces, see [3].) \(M_p \) can be identified with \(M \), and each \(M_{\theta(t)} \), for \(t \in R \), can be identified with \(M_p \) by parallel transport along \(g \). There is then a correspondence between vector fields along \(g \) and curves \(t \to Y_t \) in \(M \). The metric on \(M \) can be considered as induced by a positive definite quadratic form on \(G \) invariant under \(\text{Ad} \ G \).

Let \(P \) denote the projection of \(G \) on \(M \). Then \(N = P(K) \) is identified with \(O(K)_p \). Let \(X \in M \) correspond to \(X_0 \). Then \(X \in N^X \). One sees that a curve \(t \to Y_t \) in \(M \) corresponds to a vector field in \(J_g^K \) if and only if

\[
Y_0 \in N, \\
Y_0' + T_g(Y_0) \in N^\perp, \\
Y_0'' = (\text{Ad} X)^2 Y_t,
\]

where \(t \to Y_t' \) is now the derivative in the ordinary sense. (One uses the explicit formula \(\text{Ad} [x, y] = -R(x, y) \) for the curvature in symmetric spaces and the fact that curvature is invariant under parallel translation in identifying \(R(X_t, Y_t)X_t \) with \((\text{Ad} X)^2 Y_t, [3]. \))

If \(k \in K \), \(\pi(k) \) corresponds to the curve \(t \to \pi(k)_t = \text{P}((\text{Ad} \text{Exp} tX)(k)) \), hence \(\pi(k)_0 = P(k), \pi(k)'_0 = P([X, k]) \).

The question of variational completeness can now be treated in this Lie algebra setting as a property of solutions of vector-valued ordinary linear differential equations (2.2) with constant coefficients. In particular, a reduction of \(M \) into subspaces invariant under
(Ad X)² leads to a decomposition of solutions of (2.2) into solutions taking values in the invariant subspaces.

3. The proof.
(a) kernel \(\pi = K \cap L \cap \text{kernel Ad } X. \)
(b) \(\dim \pi(K) = \dim K - \dim K \cap L \cap \text{kernel Ad } X = \dim P(K) + \dim K \cap L \cap \text{kernel Ad } X = \dim P(K) + \dim \text{Ad } X(K \cap L). \)
(c) \([K_L, K_L] \subset K, [K, K_L] \subset K_L, \) since \(K, \) is a symmetric subalgebra of \(G. \) (The perpendicular operation \(\perp \) is always with respect to the given metric on \(G. \) \(L_L = M. \) \(\text{Ad } X)^2(P(K)) \subset P(K), \) since \(X \in K_L \cap L. \)
(d) \(\text{Ad } X(K \cap L) \subset K_L \cap L \) hence \(\text{Ad } X(K \cap L) \subset P(K) \cap M. \) \(\text{Ad } X)^2(\text{Ad } X(K \cap L)) \subset (\text{Ad } X)^2(K_L \cap L) \subset \text{Ad } X(K \cap L). \)
(e) Define \(Q = M \cap P(K) \cap \text{Ad } X(K \cap L) = (P(K) + \text{Ad } X(K \cap L)) \cap M. \) Then, \((\text{Ad } X)^2(Q) \subset Q, Q \subset K_L \cap L. \)
(f) \(\text{Ad } X(Q) = 0, \) for, \(\text{Ad } X(Q) \subset K \cap L, \) hence \(\text{Ad } X^2(Q) \subset K \cap L. \)

\(\text{Dim } M = \dim M = \dim J^K_0 = \dim (\pi(K) + Q). \)

(h) If \(k \subset K, \) then \(\pi(k) \subset Q \) for all \(t \geq 0. \)

Proof. \(\pi(k)_t = P(\sinh(\text{Ad } X)(k)) + P(\cosh(\text{Ad } X)(k)). \) Now, \(P(\cosh(\text{Ad } X)(k)) \subset P(K) \subset Q. \) Then, \(\sinh(\text{Ad } X)(k) \subset Q \) because of (e) and (f), and the fact that \((\text{Ad } X)^2 \) is a symmetric transformation, with respect to the positive-definite quadratic form on \(G, \) that commutes with \(P. \)

Now, define a map \(\psi : Q \rightarrow J^K_0 \) as follows: For \(q \in Q, \psi(q), \) is the curve in \(M \) satisfying (2.2) and
\[
\psi(q_0) = 0,
\psi(q') = q.
\]

Because of (e) and (f), \(\psi(q)_t = tq, \) and hence \(\psi \) is one-to-one. Then \(J^K_0 = \psi(Q) + \pi(K), \psi(Q) \cap \pi(K) = 0 \) and the theorem follows. For if \(t \rightarrow Y_t \) is an element of \(J^K_0, Y_t = \pi(k)_t + t q \) for \(k \subset K, q \subset Q, \) and \(Y_t = 0 \) for some \(t > 0, \) then \(q = 0 \) by (h).

Bibliography