A GENERALIZATION OF A THEOREM OF N. ITÔ ON \mathbf{p}-GROUPS

CHARLES HOBBY AND C. R. B. WRIGHT

We shall use the following notation: G is a finite p-group; $\phi(G)$ is the Frattini subgroup of G; if M and N are subgroups of G, then (M, N) is the subgroup of G generated by the set of all expressions $m^{-1}n^{-1}mn$ for $m \in M$ and $n \in N$; $M \subseteq N$ means M is properly contained in N. The descending central series G_1, G_2, \ldots, G_n, of G is defined recursively by $G_1 = G$ and $G_{m+1} = (G_m)$.

N. Itô [2] has shown that if $H_2 \subseteq G_2$ then $(H \phi(G))_2 \subseteq G_2$. Our main result is the following generalization of Itô's theorem.

Theorem 1. If G is a finite p-group and H a subgroup of G such that $H_n \subseteq G_n$, then $(H \phi(G))_n \subseteq G_n$.

We first prove two lemmas, the second of which is of independent interest.

Lemma 1. Let H be a subgroup of the p-group G. Then (G, H_n) is contained in any normal subgroup of G which contains (G_n, H).

Proof. The lemma is certainly true if $n = 1$, so suppose it is true for $n = k$ and all pairs $\{G, H\}$. It is known [1, Theorem 10.3.5] that $(G, H_{k+1}) = (G, (H_k, H))$ is contained in any normal subgroup of G which contains $((G, H_k), H)$ and $((G, H), H_k)$. But $(G, H_k) \subseteq G_{k+1}$, and by the induction assumption $((G, H_k), H)$ is contained in any normal subgroup of (G, H) which contains $((G, H), H_k)$; hence $((G, H_k), H_k)$ is contained in any normal subgroup of G which contains $((G, H), H)$. Since $(G, H)_k \subseteq G_k \subseteq G_{k+1}$, it follows that $((G, H)_k, H)$ is contained in any normal subgroup of G which contains (G_{k+1}, H). Thus $(G, (H_k, H))$ is contained in any normal subgroup of G which contains (G_{k+1}, H), and the lemma follows by induction.

Lemma 2. If G is a finite p-group and H a subgroup of G such that $H_n \subseteq G_n$, then $H_n G_{n+1} \subseteq G_n$.

Proof. Let G be a group of minimal order such that there exist a subgroup K of G and an integer m for which the lemma is false, i.e., such that $K_m \subseteq G_m$ but $K_m G_{m+1} = G_m$. In G, let H be a subgroup of \ldots
maximal order for which the lemma is false, and suppose that \(n \) is an integer such that \(H_n \subseteq G_n \) but \(H_n G_{n+1} = G_n \).

Certainly \(G_{n+1} \) contains a normal subgroup \(N \) of \(G \) such that \(H_n N = G_n \), and if \(M \subseteq N \) and \(M \) is normal in \(G \), then \(H_n M \subseteq G_n \). If \(N \) does not have order \(p \) there exists a subgroup \(M \subseteq N \) such that \([N : M] = p \) and \(M \) is normal in \(G \). Then \((HM/M)_n = H_n M/M \subseteq G_n / M = (G/M)_n \), while \((HM/M)_n (G/M)_{n+1} = (H_n G_{n+1}) / M = G_n / M \) = \((G/M)_n \). Thus the lemma is false for \(G/M \); hence \(M = \langle 1 \rangle \) since \(G \) is a group of minimal order for which the lemma is false. It follows that the normal subgroup \(N \) must have order \(p \); hence \(N \) is contained in the center of \(G \). Since \(H_n \subseteq G_n \) and \(H_n N = G_n \), we have \(G_n = H_n \times N \).

Let \(K \) be the normalizer of \(H \) in \(G \). If \(K = G \), then \(H_n \), as a characteristic subgroup of the normal subgroup \(H \), is normal in \(G \). But then \((G/H_n)_{n+1} = H_n G_{n+1} / H_n = G_n / H_n = (G/H_n)_n \). Since \(G/H_n \) is nilpotent, it follows that \((G/H_n) = \langle 1 \rangle \), but then \(G_n = H_n \), which is a contradiction. Thus \(K \subseteq G \).

Now \(H_n G_{n+1} = G_n \) and \(H \subseteq K \) imply that \(K_n G_{n+1} = G_n \), therefore \(K_n = G_n \) since otherwise the lemma is false for \(K \), a larger subgroup than \(H \). But also \(K_{n+1} \subseteq G_{n+1} \), since if \(K_{n+1} = G_{n+1} \), then \(H_n K_{n+1} = G_n = K_n \) while \(H_n \subseteq G_n = K_n \), and the lemma is false for \(K \), a group of smaller order than \(G \). Moreover, \(K_{n+1} G_{n+2} \subseteq G_{n+1} \), since otherwise \(K \) would be a subgroup larger than \(H \) for which the lemma is false (in this case for \(m = n + 1 \)).

Clearly \(H_{n+1} G_{n+2} \) is normal in \(G \). Also, \((G_n, H) = (H_n \times N, H) = H_{n+1} \) since \(N \) is in the center of \(G \), hence \((G_n, H) \subseteq H_{n+1} G_{n+2} \). Thus, by Lemma 1, \((G_n, H_n) \subseteq H_{n+1} G_{n+2} \). But \(G_{n+1} = (G_n, G) = (H_n \times N, G) = (H_n, G) \), so \(G_{n+1} \subseteq H_{n+1} G_{n+2} \subseteq K_{n+1} G_{n+2} \subseteq G_{n+1} \). This is a contradiction, and the lemma follows.

Proof of Theorem 1. We assume \(G \) is of minimal order and \(H \) is a subgroup of \(G \) having maximal order such that the theorem is false. If \(K \) is a subgroup of \(G \) such that \(G \supseteq K \supseteq H \), then \(K_n = G_n \). For if \(K_n \subseteq G_n \), it follows from the maximality of \(H \) that \((K \Phi(G))_n \subseteq G_n \), and consequently \((K \Phi(G))_n \subseteq G_n \). Moreover, \((K \Phi(K))_n \subseteq K_n \). For if \((K \Phi(K))_n = K_n \), then since \(H_n \subseteq G_n = K_n \), \(K \) is a smaller group than \(G \) for which the theorem is false. Thus \(H \Phi(K) = H \), and hence \(\phi(K) \subseteq H \). Now also \((H_G)_n \subseteq H_G \), so that by Lemma 2 \((H_G)_n G_n \subseteq G_n \). Hence, \(H_G \subseteq H \) and \(H \) is normal in \(G \).

If \(\langle x, H \rangle \subseteq G \) for every \(x \) in \(G \), then \(x^p \in \Phi(\langle x, H \rangle) \subseteq H \) for every \(x \) in \(G \). Thus in this case \(P(G) \subseteq H \). But \(G \subseteq H \), so that \(\Phi(G) \subseteq H \) which is impossible.

Thus there is an \(x \) such that \(\langle x, H \rangle = G \). Since \(x^p \in \Phi(\langle x, H \rangle) \subseteq G \). But then \(x^p \in \Phi(\langle x^p, H \rangle) \subseteq H \), so that \(H \) has index at most \(p^2 \) in \(G \).
Since G is noncyclic, $\phi(G)$ is the intersection of all normal subgroups of index p^2 in G; hence $\phi(G) \subseteq H$ which is impossible.

The theorem is thus proved.

Corollary. If G is a finite p-group which can be generated by two elements, and if $G_n \neq \langle 1 \rangle$, then $H_n \subseteq G_n$ for every proper subgroup H of G.

Proof. If $H \subseteq G$ there exists a subgroup N of G such that $[G: N] = p$ and $H \subseteq N$. Then $\phi(G) \subseteq N$, and since G can be generated by two elements, there exists an element x such that $N = \langle x, \phi(G) \rangle$. The corollary is trivial if $n = 1$. But if $n \geq 2$ then $\langle x \rangle_n = 1$, so that by Theorem 1, $N_n = \langle \langle x \rangle \phi(G) \rangle_n \subseteq G_n$. The corollary follows, since $H_n \subseteq N_n$.

As another application of Lemmas 1 and 2 we prove the following.

Theorem 2. If G is a finite, nilpotent group and H is a subgroup of G such that $H_n = G_n$, then $H_{n+k} = G_{n+k}$ for every positive integer k.

Proof. It will suffice to prove the theorem for G a finite p-group. We prove that $H_{n+1} = G_{n+1}$. Note that since $(HG_2)_{n+1} \subseteq H_{n+1}G_{n+2}$, it would follow from $H_{n+1} \subseteq G_{n+1}$ and Lemma 2 that $(HG_2)_{n+1} \subseteq G_{n+1}$. Thus if the theorem fails it must fail for a normal subgroup H. But using Lemma 1 we have

$$G_{n+1} = (G, G_n) = (G, H_n) \subseteq (G_n, H) = (H_n, H) = H_{n+1}$$

if H is normal. Thus the theorem is proved.

References

California Institute of Technology