Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Some results on tame disks and spheres in $ E\sp{3}$


Authors: P. H. Doyle and J. G. Hocking
Journal: Proc. Amer. Math. Soc. 11 (1960), 832-836
MSC: Primary 54.78
DOI: https://doi.org/10.1090/S0002-9939-1960-0126839-2
MathSciNet review: 0126839
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] E. Artin and R. H. Fox, Some wild cells and spheres in three-dimensional space, Ann. of Math. vol. 49 (1948) pp. 979-990. MR 0027512 (10:317g)
  • [2] R. H. Bing, Locally tame sets are tame, Ann. of Math. vol. 59 (1954) pp. 145-158. MR 0061377 (15:816d)
  • [3] -, Approximating surfaces with polyhedral ones, Ann. of Math. vol. 65 (1957) pp. 456-483. MR 0087090 (19:300f)
  • [4] P. H. Doyle, Tame triods in $ 3$-space, Proc. Amer. Math. Soc. vol. 10 (1959) pp. 656-658. MR 0111002 (22:1870)
  • [5] -, Unions of cell pairs in $ {E^3}$, Pacific J. Math. (to appear).
  • [6] P. H. Doyle and J. G. Hocking, A note on piercing a disk, Proc. Amer. Math. Soc. vol. 10 (1959) pp. 633-636. MR 0126838 (23:A4132)
  • [7] O. G. Harrold, H. C. Griffith, and E. E. Posey, A characterization of tame curves in three-space, Trans. Amer. Math. Soc. vol. 79 (1955) pp. 12-34. MR 0091457 (19:972c)
  • [8] O. G. Harrold and E. E. Moise, Almost locally polyhedral spheres, Ann. of Math. vol. 57 (1953) pp. 575-578. MR 0053504 (14:784c)
  • [9] O. G. Harrold, Locally peripherally unknotted surfaces in $ {E^3}$, Ann. of Math. vol. 59 (1959) pp. 276-290.
  • [10] E. E. Moise, Affine structures in $ 3$-manifolds V. The triangulation theorem and Hauptvermutung, Ann. of Math. vol. 56 (1952) pp. 96-114. MR 0048805 (14:72d)
  • [11] -, Affine structures in $ 3$-manifolds VII. Disks which are pierced by intervals, Ann. of Math. vol. 58 (1953) pp. 403-408. MR 0058208 (15:337b)
  • [12] -, Affine structures in $ 3$-manifolds VIII. Invariance of the knot-types; local tame imbedding, Ann. of Math. vol. 59 (1954) pp. 159-170. MR 0061822 (15:889g)
  • [13] E. E. Posey, Almost polyhedral cells in euclidean space, Thesis, University of Tennessee, 1954.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 54.78

Retrieve articles in all journals with MSC: 54.78


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1960-0126839-2
Article copyright: © Copyright 1960 American Mathematical Society

American Mathematical Society