POWER SERIES WITH GAPS

T. S. MOTZKIN

If every qth term in a power series \(f(z) = a_0 + a_1z + \cdots \) with finite radius of convergence is missing then \(f(z) \) has at least two singularities on its circle of convergence (Mandelbrojt [1]). I proved more generally [2, Theorem 1]:

\[
\text{If } a_m = 0 \text{ for all } m \equiv \tau_1, \cdots, \tau_k \pmod{q}, \; k \leq 3, \text{ where } \tau_1, \cdots, \tau_k \text{ for every divisor } q' \text{ of } q \text{ belong to } \max(k, q') \text{ different residue classes, then } f(z) \text{ has at least } k + 1 \text{ singularities on its circle of convergence.}
\]

I wish to show here that this statement is not true for \(k = 4 \) and \(k \geq 6 \). The case \(k = 5 \) remains open. It would be of interest to determine the minimum number \(\nu \) of singularities for given \(k \), as well as for given \(k \) and \(q \). For prime \(q \) it is known [3] that \(\nu \geq k + 1 \).

The pertinent counterexample is

\[
f(z) = \frac{1 - z^{a}}{1 - z^{\alpha}} = 1 - z^{\alpha} + z^{\alpha \beta} - z^{\alpha + \alpha \beta} + \cdots,
\]

with \(q = \alpha \beta \) and \(\alpha \beta - \alpha \) singularities on the unit circle. Let \(\tau_1, \cdots, \tau_k \) be the \(q - \gamma \) numbers \(0, \cdots, q-1 \) after deletion of \(0, \cdots, \gamma - 2 \) and \(\alpha \), where \(2 \leq \gamma \leq \alpha \). If \(\beta \geq 3 \) then, for every proper divisor \(q' \) of \(q \), all residue classes are represented by \(q - q', \cdots, q - 1 \). However, \(\alpha \beta - \alpha \leq k \).

For given \(k \), the choice of \(\alpha \) (not exceeding \(k/2 \) and not dividing \(k + 1 \)) determines \(\beta \) and \(\gamma \) uniquely. Set \(\alpha = \lfloor k/2 \rfloor \), \(\beta = 3 \), \(\gamma = k/2 \) or \((k-3)/2 \); then \(\gamma \geq 2 \) excludes only \(k = 1, 2, 3, 5 \).

References

2. T. S. Motzkin, Bemerkung über Singularitäten gewisser mit Lücken behafteter Potenzreihen, Math. Ann. vol. 109 (1933) pp. 95–100; in Theorem 1, Condition 1 is to be taken in its stronger meaning: “in” classes does not imply exhaustion of those classes.

University of California, Los Angeles

Presented to the Society, April 23, 1960; received by the editors August 10, 1959.

\(^1 \) Sponsored, in part, by the Office of Naval Research. Reproduction in whole or in part is permitted for any purpose of the United States Government.