ALMOST UNIFORM CONVERGENCE VERSUS
POINTWISE CONVERGENCE

JOHN W. BRACE

In many an example of a function space whose topology is the
topology of almost uniform convergence it is observed that the same
topology is obtained in a natural way by considering pointwise con-
vergence of extensions of the functions on a larger domain [1; 2].
This paper displays necessary conditions and sufficient conditions
for the above situation to occur.

Consider a linear space $G(S, F)$ of functions with domain S and
range in a real or complex locally convex linear topological space F.
Assume that there are sufficient functions in $G(S, F)$ to distinguish
between points of S. Let S_β denote the closure of the image of S
in the cartesian product space $\times \{g(S) : g \in G(S, F)\}$. Theorems 4.1
and 4.2 of reference [2] give the following theorem.

Theorem. If $g(S)$ is relatively compact for every g in $G(S, F)$, then
pointwise convergence of the extended functions on S_β is equivalent to
almost uniform convergence on S.

When almost uniform convergence is known to be equivalent to
pointwise convergence on a larger domain the situation can usually
be converted to one of equivalence of the two modes of convergence
on the same domain by means of Theorem 4.1 of [2]. In the new
formulation the following theorem is applicable.

In preparation for the theorem, let $B(S, R)$ denote all bounded
real valued functions on S which are uniformly continuous for the
uniformity which $G(S, F)$ generates on S. $G(S, F)$ will be called a
full linear space if for every f in $B(S, R)$ and every g in $G(S, F)$ the
function fg obtained from their pointwise product is a member of
$G(S, F)$. (S, G) denotes S with the weakest topology such that each
g in $G(S, F)$ is continuous, while $(S, G) \cup \{\infty\}$ denotes the one point
compactification of (S, G).

Theorem. If $G(S, F)$ is a full linear space in which pointwise con-
vergence and almost uniform convergence are equivalent then (S, G) is

Presented to the Society, January 22, 1959; received by the editors November 16,
1959 and, in revised form, February 15, 1960.

1 The author is indebted to the referee for his helpful suggestions.

This research was supported in part by the Air Force Office of Scientific Research
AF 18(603)-78 and in part by the National Science Foundation, Grant 9414.
either (i) compact, or (ii) locally compact and each \(g \) in \(G(S, F) \) can be continuously extended over \((S, G) \cup \{ \infty \} \) such that \(g(\infty) = 0 \).

Proof. Let \(CS \) be the compactification of \((S, G) \) obtained by taking the closure of the image of \(S \) in \(\times \{ f(S) : f \in B(S, R) \} \). Assume \((S, G) \) is not compact and that there is an \(s_0 \) in \(CS - S \), a net \(\{ s_\alpha \} \) in \(S \), and a function \(g \) in \(G(S, F) \) such that the net \(\{ s_\alpha \} \) converges to \(s_0 \) but the net \(\{ g(s_\alpha) \} \) does not converge to 0. There exists a net \(\{ f_\alpha \} \) in \(B(S, R) \) converging pointwise on \(S \) to the function which is identically one while all continuous extensions of the members of the net have the value zero at \(s_0 \). This gives a contradiction in that the net \(\{ f_\alpha g \} \) in \(G(S, F) \) converges pointwise to \(g \) but not almost uniformly. Thus when \((S, G) \) is not compact each \(g \) in \(G(S, F) \) can be continuously extended over \(CS \) so that \(g(s) = 0 \) for every \(s \) in \(CS - S \). Since \(CS \) is the Hausdorff completion of \((S, G) \), there is only one point in \(CS - S \). Thus \((S, G) \) is locally compact and the proof completed.

Corollary. A uniform space \(E \) is compact if and only if pointwise convergence and almost uniform convergence are equivalent in \(C(E, R) \), all uniformly continuous real valued functions on \(E \).

Proof. If \(E \) is compact, see Theorem 4.2 of [2]. For the converse, observe that each \(f \) in \(C(E, R) \) is bounded, Theorem 1.3 of [2]. Thus \(fg \) is in \(C(E, R) \) whenever \(f \) and \(g \) are, and \(C(E, R) \) is a full linear space. Since \(C(E, R) \) contains nonzero constant functions, conclusion (ii) of the second theorem is not possible and \(E \) must be compact.

Bibliography

University of Maryland