A NOTE ON SEMI-GROUPS IN A LOCALLY COMPACT GROUP

ANATOLE BECK

1. Introduction. In a recent paper by this author and others [1], the following theorem is proved:

Theorem 3 (Simon). In a compact group, every semi-group which contains a set of positive measure is an open and closed subgroup and therefore is itself measurable.

In this paper, we show that this result can be improved to the following:

Theorem A. In a locally compact group, every semi-group of nonzero inner measure and finite outer measure is an open compact subgroup.

This theorem can also be used to show an elusive¹ point in Theorem 5 of [1].

2. Proof of Theorem A. We rely heavily in this proof on Theorem 1 of [1], which states:

Theorem 1. Let G be a locally compact topological group with completed Haar measure μ and outer measure μ*. Let A, B ⊆ G be sets such that μ(A) > 0 and μ*(B) > 0. Then the interior of BA (also AB) is nonempty.

Let S now be a semi-group in a locally compact group G with Haar measure μ. We assume that μ*(S) > 0, so that S contains a measurable set of nonzero measure. Thus, by Theorem 1, the interior of $S^a \subset S$ is nonempty. Hence S_0, the interior of S, is also nonempty. Since S has finite outer measure, S_0 is measurable of finite measure. It is also clear that $S_0 \cdot S \subset S_0$. For each $s \in S_0$, we have

\[s \cdot S_0 \subset S_0^a \subset S_0 \cdot S \subset S_0, \]

so that, since μ is left invariant,

\[\mu(S_0) = \mu(s \cdot S_0) \leq \mu(S_0^a) \leq \mu(S_0). \]

Revised by the editors February 10, 1960.

¹ The author expresses his debt to Mr. John E. Lange for pointing out this elusive-ness.

992
Therefore

\[\mu(S_0 \setminus s \cdot S_0) = 0. \]

Since \(s \cdot S_0 \subseteq \overline{s \cdot S_0} \), we see that \(\mu(S_0 \setminus s \cdot S_0) = 0. \) But \(S_0 \setminus s \overline{S_0} \) is open, so that it must be empty, and \(s \cdot \overline{S_0} \supset S_0. \) We now set \(U = s^{-1} \cdot S_0. \) This is clearly a neighborhood of the identity in \(G \), and we have \(s \cdot \overline{S_0} \supset S_0 \supset S_0 = s \cdot U \cdot S_0 \supset S \cdot \overline{S_0}. \) Thus, \(S_0 = s \cdot \overline{S_0} \), and \(S_0 \) is closed, so that \(S_0 = s \cdot S_0. \)

It follows immediately that \(S_0 \) is an open and closed subgroup of \(G. \) We now have

\[S = e \cdot S \subseteq S_0 \cdot S \subseteq S_0 \subseteq S. \]

Therefore \(S = S_0. \) Since \(S \) is an open and closed subgroup of finite measure, \(S \) is compact.

3. Proof of part of Theorem 5 in [1]. Part of Theorem 5 of [1] requires the proof that if in a locally compact group \(G \) we have two measurable sets \(T \) and \(S \) with \(T \) a subgroup and \(S \) a sub-semigroup of \(G, \) and if \(\mu(T) = \infty \) and \(\mu(T \setminus S) < \infty, \) then we have \(T \subseteq S. \) We construct the set \(A = T \cap (S \setminus S^{-1}); \) then we observe that \(A^{-1} \) is a semi-group, for if \(a_1, a_2 \in A, \) then \(a_2 a_1 \in S. \) However, \(a_1^{-1} a_2^{-1} \in S, \) for that would give us \(a_2^{-1} a_1 S \subseteq S, \) and \(a_2 \in S^{-1}, \) contrary to assertion. Thus, \(a_1^{-1} a_2^{-1} \in A^{-1}, \) which is thus a semi-group. Since \(A^{-1} = T \cap (S^{-1} \setminus S), \) we see that \(\mu(A^{-1}) \leq \mu(T \setminus S) < \infty. \) If \(\mu(A^{-1}) > 0, \) we have, by Theorem A, that \(A^{-1} \) is an open subgroup, and thus contains \(e, \) which is false, since \(A \cap A^{-1} = \emptyset. \) Thus \(\mu(A) = 0, \) and \(T \cap S \cap S^{-1}, \) which is a sub-group of \(T, \) has the additional property that

\[\mu(T \cap S \cap S^{-1}) = \infty, \]

\[\mu(T \setminus (S \cap S^{-1})) = \mu(T \setminus S) + \mu(A) < \infty. \]

It now follows easily (cf. [1, Lemma 5.1]) that \(T = (S \cap S^{-1}) \cap T, \) which gives us \(T \subseteq S. \)

Bibliography

University of Wisconsin