SUMMABILITY OF A CLASS OF FOURIER SERIES

G. M. PETERSEN

1. In this section we shall consider a class of summability methods which sum the Fourier series

\[\frac{1}{2} a_0 + \sum_{k=1}^{\infty} (a_k \cos kx + b_k \sin kx) \]

of a function \(f(x) \) which is Lebesgue integrable and satisfies the condition

\[|f(x + h) - f(x)| = o \left[\left(\log \frac{1}{|h|} \right)^{-1} \right] \]

for some \(x \). It is known that the Fourier series of such functions need not converge [3, p. 173]. The partial sums, \(s_k(x) \), of (1) (since without loss of generality we may suppose \(f(x) \) to be even) are given by:

\[s_k(x) = \frac{2}{\pi} \int_0^x f(x + t)D_k(t)dt, \]

where

\[D_k(t) = \frac{\sin \left(k + \frac{1}{2} \right) t}{2 \sin \frac{1}{2} t}; \]

\(D_k(t) \) is called the Dirichlet kernel.

Suppose now that the matrix \(A = (a_{n,k}) \) determines a regular summability method. We shall also assume that \(A \) is a triangular matrix, i.e., \(a_{n,k} = 0 \) for \(k \geq n+1 \). The \(A \) transforms \(t_n(x) \) of the partial sums \(\{s_k(x)\} \) may then be written as follows:

\[t_n(x) = \sum_{k=1}^{n} a_{n,k}s_k(x) = \frac{2}{\pi} \sum_{k=1}^{n} a_{n,k} \int_0^x f(x + t)D_k(t)dt. \]

Regular matrices which satisfy the condition

\[\lim_{n \to \infty} \sum |a_{n,k} - a_{n,k+1}| = 0 \]

Received by the editors August 31, 1959 and, in revised form, November 16, 1959 and December 28, 1959.
are called strongly regular \([1; 2]\). We shall employ a slightly stronger condition in the theorem that follows. The proof of this theorem parallels that of a similar theorem due to Hardy and Littlewood \([3, \text{p. 34}]\).

Theorem. If

(i) \(A\) is a regular triangular matrix such that for some \(0 < r < 1\),

\[
\lim_{n \to \infty} \sum_{k=0}^{\infty} k^r \left| a_{n,k} - a_{n,k+1} \right| = 0,
\]

(ii) \(f(t)\) is Lebesgue integrable over \((0, \pi)\) and

\[
\left| f(x + h) - f(x) \right| = o \left[\left(\log \frac{1}{h} \right)^{-1} \right]
\]

for some \(x\) then at the point \(x\), the Fourier series of \(f(t)\) is summable by \(A\) to \(f(x)\).

Proof. Clearly we may suppose that \(f(t)\) is an even function and \(f(x) = 0\). We then have

\[
\left| \sum_{k=1}^{n} a_{n,k} \int_{0}^{\pi} f(x + t) D_k(t) \, dt \right| \leq \left| \sum_{k=1}^{n} a_{n,k} \int_{0}^{\pi} f(x + t) D_k(t) \, dt \right| + \left| \sum_{k=1}^{n} a_{n,k} \int_{k-1}^{\pi} f(x + t) D_k(t) \, dt \right|
\]

(3)

\[
= \left| \sum_{k=1}^{n} a_{n,k} P_k(x) \right| + \left| \sum_{k=1}^{n} a_{n,k} Q_k(x) \right| + \left| \sum_{k=1}^{n} a_{n,k} R_k(x) \right|
\]

Since \(\left| D_k(t) \right| \leq M k\) in \((0, k^{-1})\)

\[
\left| P_k(x) \right| = \left| \int_{0}^{k^{-1}} f(x + t) D_k(t) \, dt \right| \leq M k \int_{0}^{k^{-1}} \left| f(x + t) \right| \, dt \to 0
\]

as \(k \to \infty\), since \(f(x+t)\) is continuous at \(x\). Consequently \(\{P_k(x)\}\) is a null sequence. Also \(\left| D_k(t) \right| \leq M' t\) and

\[
\left| Q_k(x) \right| = \left| \int_{k^{-1}}^{\pi} f(x + t) D_k(t) \, dt \right| \leq M o \left[(\log k)^{-1} \right] \int_{k^{-1}}^{\pi} \frac{dt}{t}
\]

\[
= M' o \left[(\log k)^{-1} \right] \left[\log k - r \log k \right].
\]

Clearly \(Q_k(x)\) is a null sequence and the first two sums in (3) can be made as small as we may wish by choosing \(n\) sufficiently large. For some \(\delta\), \(\left| f(x+t) \right| < 1\) for \(0 \leq t \leq \delta\), and for large \(k\) such that \(k^{-r} > \delta\)
\[R_k(x) = \int_{k^{-r}}^{\delta} f(x + t) D_k(t) dt + \int_{-\delta}^{k^{-r}} f(x + t) D_k(t) dt = R_k'(x) + R_k''(x). \]

By the Riemann-Lebesgue theorem, \(\{ R_k''(x) \} \) is a null sequence and so is \(A \) summable to zero. We must now evaluate \(|\sum a_{n,k} R_k'(x)| \).

First we introduce the notation
\[
\sum_{n=0}^{N} b_n(t) + \cdots + b_k(t) = \sum_{n=1}^{k} K_n(t),
\]
and observe that \(|\sum_{n=1}^{k} K_n(t)| \leq \frac{M''}{l^2}. \) For some \(k, k = 1, 2, \ldots, N, k^{-r} \geq \delta. \) However, since \(\delta \) (and hence \(N \)) is fixed,

\[
\lim_{n \to \infty} \sum_{n=1}^{N} |a_{n,k}| = 0.
\]

Consider the matrix \((b_{n,k}), b_{n,k} = 0, k = 1, 2, \ldots, N, b_{n,k} = a_{n,k} \) elsewhere. The matrices \((b_{n,k}) \) and \((a_{n,k}) \) are equivalent, indeed for any sequence \(\{ s_k \} \)

\[
\lim_{n \to \infty} \sum_{n=1}^{N} (a_{n,k} - b_{n,k}) s_k = 0.
\]

Therefore in the sequel we shall assume without any loss of generality that \(a_{n,k} = 0, k = 1, 2, \ldots, N. \) We have for \(n > N \)

\[
\left| \sum_{k=1}^{n} a_{n,k} R_k'(x) \right| = \left| \sum_{k=N}^{n} a_{n,k} \int_{k^{-r}}^{\delta} f(x + t) [K_k(t) - K_{k-1}(t)] dt \right|
\leq \left| \sum_{k=N}^{n} (a_{n,k} - a_{n,k+1}) \int_{k^{-r}}^{\delta} f(x + t) K_k(t) dt \right| + \left| \sum_{k=N+1}^{n} a_{n,k} \int_{k^{-r}}^{(k-1)^{-r}} f(x + t) K_k(t) dt \right|.
\]

It then follows that

\[
\left| \sum_{k=N}^{n} (a_{n,k} - a_{n,k+1}) \int_{k^{-r}}^{\delta} f(x + t) K_k(t) dt \right|
\leq \sum_{k=N}^{n-1} |a_{n,k} - a_{n,k+1}| \int_{k^{-r}}^{\delta} \left| \frac{M''}{l^2} \right| dt
\leq M'' \sum_{k=N}^{n-1} (k^{-r} + \delta^{-1}) |a_{n,k} - a_{n,k+1}|
\]

and it is clear from the hypothesis
\begin{align*}
\lim_{n \to \infty} \sum_{k=N}^{n-1} (k^r + \delta^{-1}) | a_{n,k} - a_{n,k+1} | &= 0.
\end{align*}

Moreover,
\begin{align*}
\left| \sum_{k=N+1}^{n} a_{n,k} \int_{k}^{(k-1)-r} f(x + t)K_{k}(t)dt \right| &\leq \sum_{k=N+1}^{n} | a_{n,k} | \left| \int_{k}^{(k-1)-r} \frac{M''}{t^2} dt \right| \\
&= M'' \sum_{k=N+1}^{n} | a_{n,k} | [(k-1)^r - kr].
\end{align*}

Now the matrix \(| a_{n,k} |\) is not regular but does sum null sequences to zero if \((a_{n,k})\) is a regular matrix. The sequence \(\{(k-1)^r - kr\}\) is a null sequence for \(0 < r < 1\) and so
\begin{align*}
\lim_{n \to \infty} \sum_{k=1}^{n} | a_{n,k} | \left[kr - (k + 1)^r \right] = 0
\end{align*}
and
\begin{align*}
limit_{n \to \infty} \left| \sum_{k=1}^{n} a_{n,k}R_{k}(x) \right| = 0.\end{align*}
This completes the proof of the theorem.

2. We have remarked before that there are functions of our class, even continuous functions, such that
\begin{align*}
\limsup_{k \to \infty} s_{k}(x) = \infty, \quad \text{(see [3, p. 173]).}
\end{align*}

Consider the matrix \(B = (b_{n,k})\) where \(b_{n,k} = 1/n\) for \(1 \leq k \leq n - 1\), \(b_{n,n} = 1/f(n)\), \(b_{n,k} = 0\) for \(k \geq n + 1\), and \(\lim_{n \to \infty} f(n) = \infty\). For any choice of \(f(n)\) so that \(\lim_{n \to \infty} b_{n,n} = 0\), \(B = (b_{n,k})\) is a strongly regular matrix. The Cesàro transform of a sequence is given by
\begin{align*}
l_{n} = \frac{s_{1} + \cdots + s_{n}}{n}.
\end{align*}

The \(B\) transform of a sequence is given by
\begin{align*}
\tau_{n} = \sum_{k=1}^{n} b_{n,k}s_{k} = \frac{n - 1}{n} l_{n-1}' + b_{n,n}s_{n}.
\end{align*}

It is well known that the Cesàro method sums the Fourier series of any Lebesgue integrable function almost everywhere [3, p. 45]. We can choose \(b_{n,n}\) so that \(\lim_{n \to \infty} b_{n,n} = 0\), but \(\limsup_{n \to \infty} b_{n,n}s_{n}(x) = \infty\) for the partial sums of Fourier series of functions of the class of our theorem. For such a choice \(\{\tau_{n}\}\) diverges, since \(\{(n-1)/n)l_{n-1}'\}\) converges while \(\{b_{n,n}s_{n}\}\) does not converge. In this way we see the class of matrices of our theorem cannot be extended to include all strongly regular matrices.
References

University College of Swansea, Wales