Let G be a locally compact abelian group, \hat{G} its character group, and A the group algebra of G. Associated with any automorphism ϕ of A [2] is a homeomorphism τ of \hat{G} onto itself, with the property that, for $\alpha \in \hat{G}$, $f \in A$ and \hat{F} the Fourier transform, $\hat{F}(\phi(f))(\tau\alpha) = \hat{F}(f)(\alpha)$. Results of Helson [2] and Wendel [4] state that if e is the unit of \hat{G}, then

$$\tau(e)\tau(xy) = \tau(x)\tau(y), \quad \text{for all } x, y \in \hat{G},$$

if and only if ϕ is an isometry. The object of the present note is to give a further equivalent form of the statement that ϕ is an isometry.

Let $T_\alpha, \alpha \in \hat{G}$, be that operator on A which for all $x \in G, f \in A$ satisfies $(T_\alpha f)(x) = f(x)(x, \alpha)$. We consider homomorphisms ϕ of A onto A such that to each α there is a $\rho(\alpha) \in \hat{G}$ such that

$$\phi T_\alpha = T_{\rho(\alpha)} \phi, \quad \alpha \in \hat{G}.$$

Our result is that such homomorphisms are isomorphisms and indeed isometries.

Theorem 1. Let ϕ be a homomorphism of the group algebra A of the locally compact abelian group G onto itself. Suppose that ϕ satisfies (2); then ϕ is an isomorphism.

Let K be the kernel of ϕ. Since ϕ is automatically continuous [3], K is a proper closed ideal of A. The Wiener Tauberian theorem thus yields a maximal regular ideal M containing K. From condition (2) it follows that for $k \in K$ and $\beta \in \hat{G}$, $\phi T_{\beta}(k) = T_{\rho(\beta)} \phi (k) = 0$, and there-

1 This research was sponsored in part by the National Science Foundation under grant NSF-G5865.
fore $T_\beta(K) \subset K \subset M$. Let $k \in K$ and let α be the character corresponding to M; then $0 = \mathcal{F}(T_\beta(k))(\alpha) = \mathcal{F}(k)(\beta \alpha)$ for arbitrary $\beta \in \hat{G}$. Consequently $k = 0$, and ϕ is an isomorphism.

Lemma. Let ϕ be an automorphism of A which satisfies (2), and let τ be the associated homeomorphism of \hat{G} onto itself. Then:

(i) The mapping ρ is a homomorphism of \hat{G} onto itself.

(ii) For any $\alpha, \beta \in \hat{G}$, $\tau(\alpha \beta) = \rho(\beta)\tau(\alpha)$.

We show that ρ is a homomorphism into \hat{G}. That the image of \hat{G} under ρ is all of \hat{G} is then a consequence of (ii). For all $f \in A$, $T_{\rho(\alpha \beta)}(f) = \phi T_{\alpha \beta}(f) = \phi T_\alpha T_\beta(f) = T_{\rho(\alpha)} T_{\rho(\beta)}(f)$. Since $\phi(f)$ ranges over A, $T_{\rho(\alpha \beta)}(f) = T_{\rho(\alpha)} T_{\rho(\beta)}(f)$, whence $\rho(\alpha \beta) = \rho(\alpha)\rho(\beta)$.

It follows from (2) that for all $\beta \in \hat{G}$,

\[\mathcal{F}(T_{\alpha \beta}(f))(\tau(\beta)) = \mathcal{F}(T_{\alpha \beta}(f))(\tau(\beta)) = \mathcal{F}(T_{\alpha}(f))(\beta) = \mathcal{F}(f)(\alpha \beta) = \mathcal{F}(f)(\tau(\alpha \beta)). \]

Since the Fourier transforms of elements in A separate the points of \hat{G}, we deduce that $\rho(\alpha)\tau(\beta) = \tau(\alpha \beta)$.

Theorem 2. Let A be the group algebra of a locally compact abelian group G, and let ϕ be an automorphism of A. The following conditions are equivalent:

(a) ϕ is an isometry.

(b) The associated homeomorphism τ of \hat{G} onto itself satisfies (1).

(c) ϕ satisfies (2).

In view of our earlier remarks it suffices to show that (b) is equivalent to (c). Suppose that ϕ satisfies (2). Let τ be the homeomorphism of \hat{G} associated with ϕ. From (ii) of the lemma, with the identity e of \hat{G} in the role of α, we obtain $\tau(\beta) = \rho(\beta)\tau(e)$ for all $\beta \in \hat{G}$. Thus, using the above and (i) of the lemma,

\[\tau(e)\tau(\alpha \beta) = (\tau(e))^2 \rho(\alpha \beta) = \tau(e)\rho(\alpha)\tau(e)\rho(\beta) = \tau(\alpha)\tau(\beta). \]

Hence (c) implies (b).

Suppose that τ satisfies (1). Recall that

\[\mathcal{F}(f)(\tau(\alpha)) = \mathcal{F}(f)(\alpha), \quad \alpha \in \hat{G}, f \in A. \]

By repeated application of (3) and the definition of T_α, we obtain

\[\mathcal{F}(\phi T_\alpha(f))(\tau(\alpha \beta)) = \mathcal{F}(T_\alpha(f))(\tau(\alpha \beta)) = \mathcal{F}(\phi T_\alpha(f))(\tau(\alpha \beta)). \]

If we now apply (1), the last term above becomes

\[\mathcal{F}(\phi(f))(\tau(\alpha \beta))(\tau(e))^{-1} = \mathcal{F}(T_{\tau(\alpha \beta)}(\tau(e)))^{-1}(\tau(\alpha \beta)) = \mathcal{F}(\phi(f))(\tau(\alpha \beta)). \]

If we compare the initial and terminal points of the string of equalities, and note that the range of τ is \hat{G}, we see that

\[\mathcal{F}(\phi T_\alpha(f)) = \mathcal{F}(T_{\tau(\alpha \beta)}(\tau(e)))^{-1}(\tau(\alpha \beta)). \]
Thus \(\phi T_a(f) = T_{\tau(\rho)}(\tau(e))^{-1} \phi(f) \). However \(f \) is arbitrary in \(A \), so \(\phi T_a = T_{\tau(\rho)}(\tau(e))^{-1} \) and thus we may take \(\rho(\alpha) = \tau(\alpha)(\tau(e))^{-1} \). Hence \(\phi \) satisfies (2), and (b) implies (c).

If the mapping \(\phi \) is an involution on \(A \), a result of Civin and Yood [1] yields a homeomorphism \(\sigma \) of period two of \(\hat{G} \) onto itself such that \(\mathfrak{F}(\phi(f))(\sigma \alpha) = [\mathfrak{F}(f)(\alpha)]^{-1} \). Methods totally similar to the above and to those of [2; 4] allow one to establish the following theorem.

Theorem 3. Let \(A \) be the group algebra of a locally compact abelian group, and let \(\phi \) be an involution on \(A \). The following conditions are equivalent.

(a) \(\phi \) is an isometry.

(b) The associated homeomorphism \(\sigma \) of period two of \(\hat{G} \) onto itself satisfies \(\sigma(e)\sigma(xy) = \sigma(x)\sigma(y) \), for all \(x, y \in \hat{G} \).

(c) \(\phi \) satisfies (2).

References

University of Oregon