THE NONTRIVIALITY OF THE RESTRICTION MAP IN THE COHOMOLOGY OF GROUPS

RICHARD G. SWAN

An unpublished result of B. Mazur states that if \(\pi \) is any non-trivial finite group then there is an \(i > 0 \) such that \(H^i(\pi, \mathbb{Z}) \neq 0 \). It is, of course, trivial that \(H^i(\pi, A) \neq 0 \) for some \(\pi \)-module \(A \). The point of Mazur's theorem is that we can even take \(A = \mathbb{Z} \), the ring of integers with trivial \(\pi \)-action. Mazur's proof of this theorem is geometric. It involves imbedding \(\pi \) in a compact Lie group \(G \) and studying the Leray-Cartan spectral sequence of the covering \(G \to G/\pi \).

The purpose of this paper is to prove the following theorem which generalizes Mazur's result.

Theorem 1. Let \(\pi \) be a finite group and \(\rho \) a nontrivial subgroup of \(\pi \). Then the restriction map \(i(\rho, \pi) : H^i(\pi, \mathbb{Z}) \to H^i(\rho, \mathbb{Z}) \) [2, Chapter XII, §8] is nonzero for an infinite number of values of \(i > 0 \).

As a consequence of this theorem, we get a generalization of Mazur's result.

Corollary 1. Let \(\pi \) be a finite group and let \(p \) be a prime dividing the order of \(\pi \). Then \(H^i(\pi, \mathbb{Z}) \) has a nonzero \(p \)-primary component for an infinite number of values of \(i > 0 \).

To see this we have merely to use Theorem 1, choosing for \(\rho \) any nontrivial \(p \)-group in \(\pi \).

The proof of Theorem 1 will also be geometric. In fact, I will actually prove the following much more general theorem whose proof must necessarily be geometric.

Theorem 2. Let \(G \) be a compact, not necessarily connected Lie group. Let \(H \) be a closed nontrivial subgroup of \(G \), also not necessarily connected. Let \(f : BH \to BG \) be the map of classifying spaces induced by the inclusion map \(H \to G \) [1, §1]. Then \(f^* : H^i(BG, \mathbb{Z}) \to H^i(BH, \mathbb{Z}) \) is nonzero for an infinite number of values of \(i \).

Remark. If \(H \) has an element of order \(p \), the proof of this theorem will also show that \(f^* : H^i(BG, \mathbb{Z}_p) \to H^i(BH, \mathbb{Z}_p) \) is nontrivial for an infinite number of values of \(i \). If \(H \) is infinite, it will show that
$f^*: H^i(B_G, Q) \to H^i(B_H, Q)$ is nonzero for an infinite number of values of i. Here Q is the field of rational numbers.

Proof. By the Peter-Weyl theorem G has a faithful unitary representation [4, Chapter VI, Theorem 4] and so can be imbedded in a unitary group $U(n)$. Also, H has a subgroup isomorphic to Z_p for some prime p. This is trivial if H is finite, but if H is infinite it contains a torus [3, Exposé 23, Theorem 1] which clearly has a subgroup isomorphic to Z_p. Since the map $B_{Z_p} \to B_{U(n)}$ factors through f, it will be sufficient to prove the theorem for the case $G \cong Z_p$ and $G \cong U(l)$. (If H is infinite and we are trying to show that $H^i(B_G, Q) \to H^i(B_H, Q)$ is nontrivial, it will suffice to consider the case where $G \cong U(n)$ and H is a circle group. The rest of the proof will be substantially the same.)

Assume then that $H \cong Z_p$, $G \cong U(l)$. Imbed H in a maximal torus T of G. This can be done by taking any maximal torus T containing a generator of H [3, Exposé 23, Theorem 1]. Now, $H^*(B_T, Z)$ is a polynomial ring over Z with generators $t_1, \ldots, t_l \in H^2(B_T, Z)$. The image of $H^*(B_G, Z)$ in $H^2(B_T, Z)$ consists of all symmetric polynomials in t_1, \ldots, t_l [1, §4]. Therefore to prove the theorem it will be sufficient to find sufficiently many symmetric polynomials which map nontrivially into $H^*(B_H, Z)$ under the map g^* induced by $g: B_H \to B_T$. This map g is, of course, induced by the inclusion $H \to T$.

Now, $H^*(B_H, Z)$ is a polynomial ring over Z_p with a single generator $\alpha \in H^2(B_H, Z)$ [2, Chapter XII, §7]. Therefore $g^*(t_i) = r_i \alpha$ with $r_i \in Z_p$. I claim that at least one $r_i \neq 0$. Suppose to the contrary that all $r_i = 0$. Then $g^*: H^2(B_T, Z) \to H^2(B_H, Z)$ must be zero. Now $g: B_H \to B_T$ is a fiber map with fiber T/H [1, §1]. Of course, T/H is a torus, being a connected abelian Lie group. The map $g^*: H^2(B_T, Z) \to H^2(B_H, Z)$ is just the map $E_2^0 \to E_2^0$ in the spectral sequence of this fibration. If it is zero, all elements of E_2^0 must be trivial. Therefore $d_2: E_2^{0,1} \to E_2^{2,0}$ must be onto. This shows that T/H has rank l and that $H_1(T/H, Z) = E_2^{0,1}$ has a base $\{x_\nu\}$ such that $d_2 x_\nu = t_\nu$. (Of course it is trivial that T/H has rank l, H being finite, but I have arranged the proof so that it works for $H = S^1$ without essential change.) Now $E_2^{0,2} = H^2(T/H, Z)$ has a base $x_\mu x_\nu$, with $\mu < \nu$. Since d_2 is a derivation, $d_2(x_\mu x_\nu) = t_\mu \otimes x_\nu - t_\nu \otimes x_\mu$ in $E_2^{2,1} = H^2(B_T) \otimes H^1(T/H)$. Since these elements are linearly independent in $E_2^{2,1}$, d_2 is a monomorphism on $E_2^{0,2}$ and so $E_2^{0,2} = 0$. Also $E_2^{2,0} = 0$ and $E_2^{1,1} = 0$. Thus the spectral sequence shows that $H^2(B_H, Z) = 0$ which is absurd.

Now let s be the number of indices ν for which $r_\nu \neq 0$. By renumbering we can assume that $r_\nu \neq 0$ for $\nu = 1, 2, \ldots, s$ and $r_\nu = 0$ for $\nu > s$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Let x be the sth elementary symmetric function in t_1, \ldots, t_l. Then, for $k > 0$,

$$g^*(x^k) = \left(\prod_{1}^{s} r_r \right)^k \alpha x^k \neq 0.$$

Since the x^k are symmetric polynomials and have arbitrarily large dimensions, this proves the theorem.

Remark. If l is the smallest dimension of a faithful representation of G over the complex numbers, the proof shows that $f^*: H^i(B_\alpha, Z) \to H^i(B_H, Z)$ is nonzero for some $i \leq 2l$ (since $i = 2s$ and $s \leq l$). This is a best possible result if no further conditions are placed on G, H and l. To see this for finite groups, let H be the cyclic group of order p permuting p symbols and let G be the normalizer of H in the symmetric group S_p.

If R denotes the real numbers, duality shows that $f^*: H_i(B_H, R/Z) \to H_i(B_H, R/Z)$ is nonzero for an infinite number of values of i. But, if π is finite, $H_i(\pi, R/Z) \approx H_{i-1}(\pi, Z)$, cf. [2, Chapter XII, Proof of Theorem 6.6]. Therefore Theorem 1 has the following corollary.

Corollary 2. Let π be a finite group and ρ a nontrivial subgroup of π. Then the induced map $H_i(\rho, Z) \to H_i(\pi, Z)$ is nontrivial for an infinite number of values of $i > 0$.

Equivalently, we may say that the transfer $i(\pi, \rho): H^i(\rho, Z) \to H^i(\pi, Z)$ is nonzero for an infinite number of negative values of i [2, Chapter XII, Exercise 8].

Note that the example $Z_p \subset Z_p + Z_p$ shows that the restriction map can be zero in all negative dimensions and the transfer zero in all positive dimensions.

It would be interesting to have a purely algebraic proof of Theorem 1 but I know of no such proof.

References