ON THE KERNEL OF A TOPOLOGICAL SEMIGROUP WITH CUT POINTS

YATARÔ MATSUSHIMA

W. M. Faucett [1] recently studied the structure of the kernel of a compact connected mob which has a point that cuts the kernel. L. W. Anderson [2] has characterized the cut point of a connected topological lattice. The main purpose of this paper is to find a lattice theoretic characterization of the kernel by means of cut points in the topological semigroups derived from topological lattices. Using the concept of B-covers [3], we shall define a suitable multiplication in topological lattices to illustrate the structure of the kernel by lattice diagrams. The fact that a special case of Faucett's Theorem (Theorem 2) can be obtained from Anderson's result (Lemma 5) is important.

1. Preliminaries. We recall that a topological lattice is a Hausdorff space, \(L \), together with a pair of continuous functions \(\wedge : \mathbb{L} \times \mathbb{L} \rightarrow \mathbb{L} \) and \(\vee : \mathbb{L} \times \mathbb{L} \rightarrow \mathbb{L} \) which satisfy the usual conditions stipulated for a lattice. If \(X \) is a topological space and \(p \in X \), we say that \(p \) is a cut point of \(X \) if \(X \setminus p \) is not connected, i.e., if \(X \setminus p = U \cup V \) such that \(U \neq \emptyset \neq V \) and \(U^* \cap V = \emptyset = U \cap V^* \), where by \(A^* \) we mean the closure of \(A \).

Hereafter let \(S \) be a connected topological lattice which satisfies the modular law. Now we introduce a multiplication in \(S \) as follows:

\[(M) \ xy = (a \vee x) \wedge (b \vee y) \]

for two fixed elements \(a, b \) of \(S \).

For any two elements \(a, b \) of a lattice \(S \) let

\[B(a, b) = \{ x \mid (a \vee x) \wedge (b \vee x) = (a \wedge x) \vee (b \wedge x) = x \} \]

then \(B(a, b) \) is called the \(B \)-cover of \(a \) and \(b \) [3]. We define a mob to be a Hausdorff space together with a continuous associative multiplication. Then \(S \) is a mob with respect to \((M) \), for the multiplication is continuous since \(S \) is a topological lattice and moreover it is associative by Lemma 1.

2. The kernel \(B(a, b) \) of a mob \(S \).

Lemma 1. \(x(yz) = (xy)z \) in \(S \).

Proof. We have
THE KERNEL OF A TOPOLOGICAL SEMIGROUP

\[x(yz) = (a \lor x) \land (b \lor ((a \lor y) \land (b \lor z))) \]
\[= (a \lor x) \land (a \lor b \lor y) \land (b \lor z), \]
\[(xy)z = (a \lor ((a \lor x) \land (b \lor y))) \land (b \lor z) \]
\[= (a \lor x) \land (a \lor b \lor y) \land (b \lor z) \] by the modular law.

Lemma 2. If \(x \in B(a, b), \ y \in S, \) then (i) \(xx = x, \) (ii) \(xy \in B(a, b), \)
\(yx \in B(a, b). \)

Proof. (i) follows from the definition of \(B(a, b). \)

(ii) \((a \lor xy) \land (b \lor xy) \)
\[= (a \lor ((a \lor x) \land (b \lor y))) \land (b \lor ((a \lor x) \land (b \lor y))) \]
\[= (a \lor x) \land (a \lor b \lor y) \land (a \lor b \lor x) \land (b \lor y) \]
\[= (a \lor x) \land (b \lor y) = xy \] by the modular law;
\[(a \land xy) \lor (b \land xy) \]
\[= (a \land ((a \lor x) \land (b \lor y))) \lor (b \land ((a \lor x) \land (b \lor y))) \]
\[= (a \land (b \lor y)) \lor (b \land (a \lor x)) \]
\[= (a \lor (b \land (a \lor x))) \land (b \lor y) \]
\[= (a \lor b) \land (a \lor x) \land (b \lor y) \] by the modular law.

Since \(x \leq a \lor b \) for \(x \in B(a, b) \) we have \((a \lor b) \land (a \lor x) \land (b \lor y) = (a \lor x) \land (b \lor y) = xy. \) Similarly we have \(yx \in B(a, b). \)

Lemma 3. Let \(p \in B(a, b); \) then \(Sp \) is a minimal left ideal and \(pS \) is a minimal right ideal.

Proof. We shall prove that \((xp)(Sp) = xp \) for \(x \in S, \ p \in B(a, b). \)

For \(y \in S \) we have \((xp)(yp) = (xpy)p = ((a \lor x) \land (a \lor b \lor p) \land (b \lor y))p \)
\[= (a \lor x) \land (a \lor b \lor p) \land (a \lor b \lor y) \land (b \lor p) = (a \lor x) \land (b \lor p) = xp \] since \(p \leq a \lor b. \) Similarly we have \((pS)(px) = px. \)

Lemma 4. If \(p \in B(a, b), \) then \(B(a, b) = SpS. \)

Proof. By Lemma 2 we have \(B(a, b) \supseteq SpS. \) If we take \(r \in pS \cap Sq \)
for \(q \in B(a, b), \) then we have \(qr = q \) by Lemma 3, where \(r = px \) for some \(x \in S. \) Accordingly we have \(B(a, b) \subseteq SpS. \)

As a consequence, we have the following theorem.

Theorem 1. \(B(a, b) \) is the kernel of a mob \(S. \)

3. The structure of the kernel \(B(a, b) \) with cut points.

Lemma 5 (L. W. Anderson). If \(S \) is a connected topological lattice and if \(p \in S \) then \(p \) is a cut point of \(S \) if, and only if, \(p \neq 0, p \neq I \) and \(L = (p \lor L) \cup (p \land L). \)
The next theorem is a special case of Faucett's theorem [1, Theorem 1.3].

Theorem 2. Let S be a compact connected mob derived from a compact connected topological lattice introducing the multiplication (M) into it. If there exists a point $p \in S$ that cuts $B(a, b)$, then we have either

(i) $B(a, b) = \{x \mid a \leq x \leq b\} = S_p$, that is, $B(a, b)$ is a minimal left ideal, and every element of $B(a, b)$ is left zero for S; or

(ii) $B(a, b) = \{x \mid b \leq x \leq a\} = pS$, that is, $B(a, b)$ is a minimal right ideal, and every element of $B(a, b)$ is right zero for S.

Proof. Since p cuts $B(a, b)$, we have $B(a, b) = A \cup B$, where $A = \{x \mid x \leq p\}$ and $B = \{x \mid x \geq p\}$, by Lemma 5.

Now suppose that $a, b \leq p$; then for any element $x \in B$ such that $x > p$, we have $(a \land x) \lor (b \land x) = a \lor b \leq p < x$, that is, x does not belong to $B(a, b)$, a contradiction. Similarly the case where $a, b \geq p$ does not occur. Thus we have either $a \leq p \leq b$ or $b \leq p \leq a$. In the first case, any element x such that either $x < a$ or $b < x$ does not belong to $B(a, b)$. Now we shall prove that $B(a, b) = \{x \mid a \leq x \leq b\} = S_p$. Let $p \in B(a, b)$, $x \in S$; then $xp = (a \lor x) \land (b \lor x) = (a \lor x) \lor b = a \lor (b \land x)$ by the modular law. Then we have $a \leq xp \leq b$, hence $S_p \subset B(a, b)$.

Conversely, if we take $k \in B(a, b)$, then $kp = (a \lor k) \land (b \lor p) = k \land b = k$ since $a \leq k$, $p \leq b$. It follows that $B(a, b) \subset S_p$. Accordingly we have $S_p = B(a, b)$, and hence $B(a, b)$ is a minimal left ideal by Lemma 3.

Now let $x \in S$, $k \in B(a, b)$; then $kx = (a \lor k) \land (b \lor x) = k \land (b \lor x) = k$ since $k \leq b$, that is, every element of $B(a, b)$ is a left zero for S. This completes the proof of (i). Similarly we can prove (ii).

4. The case where no point cuts the kernel $B(a, b)$ for S. Throughout this section we shall assume that there is no point that cuts the kernel $B(a, b)$ of the mob S derived from a topological lattice.

We can easily find that (i) if $a \leq b$, then $B(a, b)$ is a minimal left ideal for S, (ii) if $b \leq a$, then $B(a, b)$ is a minimal right ideal for S, (iii) if a, b are noncomparable, then $B(a, b)$ has the same structure as that in Lemma 4.

Let us define a two-sided ideal T of a mob S to be a **prime ideal** provided that whenever $S \setminus T$ is non-null then $S \setminus \{T\}$ is a submob. A submob in a mob S is a nonvoid set T contained in S such that $TT \subset T$. Now we shall find a necessary and sufficient condition for a two-sided ideal C containing $B(a, b)$ to be a prime ideal in the case where $S \setminus g = C \cup D$, $C \neq \emptyset \neq D$ and $C^* \cap D = \emptyset = C \cap D^*$. In this case we do not assume that S is connected.
Lemma 6. Let $S \setminus B(a, b) \ni z$; then $zz \in B(a, b)$ if, and only if, $z \leq a \uparrow b$.

Proof. By the modular law, we have $(a \uparrow zz) \cap (b \setminus zz) = zz$, $(a \setminus zz) \cap (b \setminus zz) = (a \uparrow z) \cap (b \setminus z) \cap (a \uparrow b)$. If $z \leq a \uparrow b$, then we have $zz \in B(a, b)$. Conversely if $zz \in B(a, b)$, then $zz = (a \uparrow b) \cap (a \uparrow z) \cap (b \setminus z) = (a \uparrow b) \setminus zz$, and hence $z \leq (a \uparrow z) \cap (b \setminus z) = zz \leq a \uparrow b$. Hence we have $z \leq a \uparrow b$.

Theorem 3. Let S be a mob with respect to multiplication (M), and let z be an element of S such that $S \setminus z = C \setminus D$, $C \neq D$, $C \neq D^*$, $C^* \cap D = \emptyset$, and C is a two-sided ideal containing $B(a, b)$; then C is a prime ideal if, and only if $z \geq a \uparrow b$.

Proof. By Lemma 5, we have either (i) $y < z < x$ or (ii) $y > z > x$ for all $x \in C$, $y \in D$. If $z \geq a \uparrow b$, let $S \setminus C = \{z, D\} = T \ni y_1, y_2$; then $y_1, y_2 \geq z \geq a \uparrow b$, and hence $y_1y_2 = (a \uparrow y_1) \cap (b \setminus y_2) = y_1 \setminus y_2 \geq z \geq a \uparrow b$, that is, $y_1y_2 \in T$. Then C is a prime ideal. If $z > a \uparrow b$, then $z \leq a \uparrow b$ by Lemma 5. It follows that $zz \in B(a, b) \subset C$ by Lemma 6, and then C is not a prime ideal. This completes the proof.

References

Gunma University, Maebashi, Japan