ON ISOMETRIC EQUIVALENCE OF CERTAIN
VOLterra OPERATORS

G. K. KALISCH

The purpose of this paper is to extend the results of §4 of the
author's paper [3, referred to as V] to $L_p[0, 1]$ for all p such that
$1 < p < \infty$. In general we shall use the notation and definitions of V,
except that the functions considered here are of the form

$$F(x, y) = (y - x)^{m-1}aG(x, y)$$

where

$$\begin{align*}
 m & \text{ is a positive integer,} \\
 |a| & = 1, \\
 G(x, x) & > 0;
\end{align*}$$

otherwise, as in V, the complex valued function $G(x, y)$ is continu-
ously differentiable. The only difference from V is the presence of the
constant a which affects the proof of Theorem 2 of V. A version of
that theorem in the more general case where a is an arbitrary con-
stant of absolute value 1 will be published elsewhere [4]. All other
theorems and proofs of V remain valid. The class D of functions with
which we are principally concerned may be described as follows: the
functions F are of the general form (1) where, in addition, G and m
satisfy any one of the following: (A) G is analytic in a suitable region
and m is an arbitrary positive integer (see Lemma 4 of V); (B)
$G(x, y) = G(y - x)$ where $G(0) \neq 0$ and $G \in C^2$ in a neighborhood of
$y = x$ and otherwise $G(t) \in L_1[0, 1]$ and m is an arbitrary positive
integer; (C) $G \in C^2$ and $m = 1$. One very important property of the
operators T_F for $F \in D$ is the fact (see Theorem 3 of V) that their
only reducing manifolds are the subspaces $L_p[0, c]$ of $L_p[0, 1]$ for all
c $\in [0, 1]$ (see also [2; 5 and 6]). This property is crucial for the estab-
lishment of unitary invariants (in the case $p = 2$) of the operators
T_F in §4 of V. As is usual, we define q by $1/p + 1/q = 1$.

Two continuous linear transformations T_1 and T_2 mapping $L_p[0, 1]$
into itself are called isometrically equivalent if there exists an isometry
U of $L_p[0, 1]$ onto itself such that $T_1 = UT_2U^{-1}$ (regarding isometries
for $p \neq 2$, see, e.g., [1, p. 178]; the considerations of the present paper
are valid without this restriction). Two preliminary lemmas are
needed in order to extend some results on Hilbert spaces and spectral
theory to general p. We shall use the following notation: M_a is the
operator “multiplication by the characteristic function $\chi_a(x)$ of the

Received by the editors February 26, 1960.

1 The author was supported in part by the United States Air Force under Contract
No. AF 49(638)-64 and by a grant from the National Science Foundation.
interval \([0, a]\)”; similarly \(M_S\) is the operator “multiplication by the characteristic function \(c_S(x)\) of the subset \(S\) of \([0, 1]\).” We shall occasionally write \(E_a\) instead of \(M_a\).

Lemma 1. Let \(T_0\) be an idempotent bounded linear transformation of \(L_p[0, 1]\) into itself whose range is \(L_p[0, a]\) for some \(a \in (0, 1]\). Then \(\| T_0 \| = 1\) if and only if \(T_0 = M_a\).

Proof. Since \(\| M_a \| = 1\) is obvious, we turn to the converse. Let \(N_1 = L_p[0, a]\) and \(N_2 = L_p[a, 1]\). Then \(T_0 - M_a = T\) maps \(N_1\) into \(0\) and \(N_2\) into \(N_1\); we have \(T_0 = M_a + T\). We wish to show that \(T = 0\). Suppose that \(T \neq 0\); let \(b = \| T \| > 0\). Find a positive real number \(e\) such that

\[
(1 + b^q)^{1/q} - e \frac{b^{-1} + b^{q/p}}{(1 + b^q)^{1/p}} > 1;
\]

now determine \(f_2 \in N_2\) such that \(\| Tf_2 \|_p \geq (b - e)\| f_2 \|_p\) where

\[
\| f_2 \|_p = \frac{b^q}{1 + b^q}.
\]

Let \(f_1 = b^{-q}Tf_2 \in N_1\) and let \(f = f_1 + f_2\). Then \(T_0f = f_1 + Tf_2 = (b^{-q} + 1)Tf_2\).

Since \(f_i \in N_i\) \((i = 1, 2)\) we have \(\| f \|_p = \| f_1 \|_p + \| f_2 \|_p\) and

\[
\| f_1 \|_p = b^{-pa}b^p\| f_2 \|_p = \frac{b^{-pa}b^p}{1 + b^q} = \frac{1}{1 + b^q}.
\]

Therefore

\[
\| f \|_p = \| f_1 \|_p + \| f_2 \|_p \leq \frac{1}{1 + b^q} + \frac{b^q}{1 + b^q} = 1.
\]

On the other hand,

\[
\| T_0f \|_p = \| f_1 + Tf_2 \|_p = (b^{-q} + 1)\| Tf_2 \|_p \geq (b^{-q} + 1)(b - e)\| f_2 \|_p
\]

\[
= \frac{(b^{-q} + 1)(b - e)b^{q/p}}{(1 + b^q)^{1/p}}
\]

\[
= \frac{(b^{-q} + 1)b^q}{(1 + b^q)^{1/p}} - e \frac{b^{-1} + b^{q/p}}{(1 + b^q)^{1/p}}
\]

\[
= (1 + b^q)^{1/q} - e \frac{b^{-1} + b^{q/p}}{(1 + b^q)^{1/p}}
\]

\[
> 1
\]
by the choice of e, see (2). But this contradicts $||T_0|| = 1$ so that b and hence T must be zero, i.e., $T_0 = M_a$, and the proof of the lemma is complete.

The following lemma shows that the projections E_a for all $a \in [0, 1]$ generate a maximal abelian algebra in the algebra of all bounded linear transformations of $L_p[0, 1]$ into itself not only for $p = 2$ but indeed for all p considered in this paper.

Lemma 2. Let T be a bounded linear transformation mapping $L_p[0, 1]$ into itself and suppose that $TE_a = E_aT$ for all $a \in [0, 1]$. Then there exists a bounded measurable function f such that $T = M_f$ (= “multiplication by f”).

Proof. Let $e = e(x)$ be the function identically equal to 1 and let $f(x) = (Te)(x)$. We shall show that f is essentially bounded and that $T = M_f$. If g is a simple function: $g(x) = \sum_j a_j \varphi_j(x)$, then $Tg = \sum_j a_j T\varphi_j(x)$; but $\varphi_j(x) = (M_\varphi \varphi_j)(x)$ so that $(T\varphi_j)(x) = (TM_\varphi \varphi_j)(x) = (M_\varphi T\varphi_j)(x) = (M_\varphi f)(x)\varphi_j(x)$ since our hypothesis implies that T commutes not only with all $E_a = M_a$ but also with all relevant M_φ. Therefore $(Tg)(x) = f(x)g(x)$ for all simple g. The boundedness of T implies that $||Tg||_p \leq ||T||_p ||g||_p$, $\int_0^1 |f(x)g(x)|\, \rho dx \leq ||T||_p ||g||_p$ for all simple g. Hence $|f|^p$ and $|f|$ are essentially bounded and $(Tg)(x) = f(x)g(x)$ for all $g \in L_p[0, 1]$.

If $s = s(t)$ is a monotone increasing function defined on $[0, 1]$ such that $s(0) = 0$ and $s(1) = 1$, we write $U_s = M(s)$, where we use the notation of V. If $s(t)$ is absolutely continuous with an inverse function of the same kind, then U_s as a linear transformation of $L_p[0, 1]$ into itself is an isometry onto.

Theorem 1. Let T_{F_1} and T_{F_2} be two continuous linear transformations of $L_p[0, 1]$ into itself whose only reducing manifolds are the subspaces $L_p[0, c]$ of $L_p[0, 1]$ for all $c \in [0, 1]$, such as, for example, the transformations T_F for $F \in D$. Then if T_{F_1} is isometrically equivalent to $T_{F_2} = UT_{F_1}U^{-1}$, there exist: (a) a measurable function $h(x)$ defined on $[0, 1]$ such that $h(x) = 1$; (b) a strictly monotone absolutely continuous function $s(x)$ defined on $[0, 1]$ such that $s(0) = 0$ and $s(1) = 1$ with an inverse function of the same kind. We have $U = M_hU_s$. The functions F_1 and F_2 are then related by the equation

$$F_2(x, y) = \frac{h(x)}{h(y)} (s'(x))^{1/p} (s'(y))^{1/q} F_1(s(x), s(y)).$$

If conversely two functions F_1 and F_2 are related by (3) where the functions $h(x)$ and $s(x)$ are defined as in (a) and (b) above, then T_{F_1} is isometrically equivalent to $T_{F_2} = UT_{F_1}U^{-1}$ where $U = M_hU_s$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Proof. Suppose first that $T_{F_1} = UT_{F_1}U^{-1}$. Since both linear transformations have as their only reducing manifolds the spaces $L_p[0, c]$ for all $c \in [0, 1]$, we can conclude that $UE_i U^{-1} = T_{F(t)}$ where $T_{F(t)}$ is idempotent with range $L_p[0, r(t)]$; therefore $r(t)$ is increasing and satisfies the equations $r(0) = 0$ and $r(1) = 1$. Since $\|E_i\| = 1$ and U is an isometry, we have $\|T_{F(t)}\| = 1$ for all positive $r(t)$. Lemma 1 now implies that $T_{F(t)} = T_{E(t)} = UE_i U^{-1}$. To show that r is absolutely continuous and strictly increasing, we consider for $g \in L_q[0, 1]$ the expression $(E_t o f, g) = (UE_i U^{-1} f, g) = (E_i f_1, g_1)$, where $f_1 = U^{-1} f$ and $g_1 = U^* g$; the linear transformation U^* is the adjoint of U (acting in $L_q[0, 1]$). If $f = g = 1$ then $r(t) = \int_0^t f_1(x) g_1(x) dx$. This shows that $r(t)$ is absolutely continuous. If $f_1 = g_1 = 1$ then $t = \int_0^r f(s) g(x) dx$. This shows that $r(t)$ is strictly increasing; the inverse function $s(t)$ of $r(t)$ has the same properties. It is easy to verify that $U^{-1} E_t U = E_t$; this equation together with the equation $UE_i U^{-1} = T_{E(t)}$ implies that $U_t U$ commutes with all E_t. Lemma 2 then implies that $U_i U = M_k$ where $k = k(x)$ is a bounded measurable function. Since $U_t U$ is an isometry, the function $k(x)$ must satisfy $|k(x)| = 1$; we have $U = U^{-1} M_k$. The functions $s(x)$ and $h(x) = k(s(x))$ are the functions whose existence was asserted by the theorem; a simple calculation shows that $U = U^{-1} M_k = M_h U_x$ as promised. It is now an easy matter to verify (3); the computation needed for this purpose is similar to that needed to establish the converse of the theorem.

We state next the analog of Theorem 5 of V; the formulas and proof are changed due to the presence of the constant a in our present context, and to the arbitrariness of p.

Theorem 2. Let $F(x, y) = (y - x)^m a G(x, y)$ be of form (1) where $G \in C^1$ in a neighborhood of $y = x$ and let T_F, considered as a linear transformation of $L_p[0, 1]$ into itself, have as its only reducing manifolds the spaces $L_p[0, c]$ for all $c \in [0, 1]$, as is the case if $F \in D$. Then T_F is isometrically equivalent to a unique $T_{F_1} = UT_{F_1}U^{-1}$ where F_1 and G_1 satisfy the following:

$$F_1(x, y) = (y - x)^m a G_1(x, y),$$

or

$$G_1(x, x) = c = \left(\int_0^1 (G(u, u))^{1/m} du \right)^m > 0,$$

for

$$\text{Im} (G_{1x}(x, x)) = \text{Im} (G_{1y}(x, x)) = 0.$$

This is achieved by setting $U = M_k U_x$, where

$$r(t) = (1/c)^{1/m} \int_0^t (G(u, u))^{1/m} du.$$
The function $h(x)$ is determined by defining

\[F_0(x, y) = (y - x)^{m-1} a G_0(x, y) \]

by $T_{F_0} = U_r^{-1} T_F U_r$ where $G_0 = H_0 + iK_0$ for real H_0 and K_0 and setting $h(x) = \exp(-i/c) \int_0^x K_0(u, u) du$.

Proof. If r and h are defined as described and if we set $T_{F_1} = (M_1 U_r^{-1} T_F (M_1 U_r^{-1})^{-1}$ then F_1 does indeed satisfy (4). Thus every T_F is isometric with T_{F_1}, where F_1 has form (4). To show uniqueness, suppose that $F_i = (y - x)^{m-1} a_i G_i$ ($i = 1, 2$) are both of form (4) and that T_{F_1} is isometrically equivalent to $T_{F_2} = U T_{F_1} U^{-1}$. Then (3) implies that F_1 and F_2 are related by the following equation:

\[(y - x)^{m-1} a G_0(x, y) \]

\[= \frac{h(x)}{h(y)} (s'(x))^{1/p} (s'(y))^{1/q} \left(\frac{s(y) - s(x)}{y - x} \right)^{m-1} (y - x)^{m-1} a G_1(s(x), s(y)), \]

where the functions h and s are as in (a) and (b) of Theorem 2. On letting $y - x$ approach zero we see that $m_1 = m_2 = m$ and that

\[a_2 G_2(x, x) = (s'(x))^{m_2} a_1 G_1(s(x), s(x)), \]

since $1/p + 1/q + m - 1 = m$. Equation (5) implies that $a_1 = a_2 = a$ since $G_i(x, x) = c_i > 0$; we next observe that (5) also implies that $s(x) = x$ and that $a_1 = a_2 = a$. Equation (3) now reduces to $G_2(x, y) = (h(x)/h(y)) G_1(x, y)$ or

\[h(y)(H_2(x, y) + iK_2(x, y)) = h(x)(H_1(x, y) + iK_1(x, y)), \]

if we write $G_j = H_j + iK_j$ for real H_j and K_j ($j = 1, 2$). Our hypotheses imply that $H_j(x, x) = c$ and that $K_j(x, x) = K_{ij}(x, x) = K_{jy}(x, x) = 0$ ($j = 1, 2$) and also that $h(x) = \exp(ik(x))$ for real $k(x)$ is differentiable. Differentiation of (6) and setting $x = y$ yields $h(x)H_{22}(x, x) = ch'(x) + h(x)H_{12}(x, x)$ so that $h'/h = ik' = 1/c(H_{22}(x, x) - H_{12}(x, x))$. But the last expression is real so that $k' = 0$, and h is constant. We finally arrive at $G_1 = G_2$: If two functions F_1 and F_2 satisfy (4) and if the corresponding operators T_{F_1} and T_{F_2} are isometrically equivalent and have the spaces $L_p[0, c]$ for all $c \in [0, 1]$ as their only reducing manifolds—for example, if the functions $F_j \in \mathcal{D}$—then $F_1 = F_2$.

Observe that if our functions F belong to D, then the similarity invariants of T_F, viz., m, a, and c, enter directly into the formulation of the isometry invariants (see V [4] for similarity invariants). The “canonical functions” F_i as given by (4) are the same for all p; however a given T_F will have as its “canonical form” T_{F_0}, a transformation which in general does depend on p. If, for example, $F(x, y)$
= 1 + 2x + i(x - y), then m = 1, a = 1, c = 2. To describe its "canonical form" F_1 satisfying (4), it is convenient to introduce the function $K(x, y) = \left(\frac{(8x + 1)(8y + 1)}{8y + 1}\right)^{1/2}$. A simple calculation shows that $F_1(x, y) = 2 \exp(-i \log K)(K^{1/2} + i(K^{1/2} - K^{-1/2}))$.

References

University of Minnesota

THE NONEXISTENCE OF PROJECTIONS FROM L^1 TO H^1

D. J. NEWMAN

Consider the Banach space $L^1(0, 2\pi)$ and the subspace H^1, of all functions all of whose negative Fourier coefficients vanish. It has been conjectured that H^1 has no complement in L^1, i.e., that L^1 is not the direct sum of H^1 and some other Banach space. In this note we give a proof of this conjecture.

The conjecture is of course equivalent to the following statement on projection operators.

Theorem. There exists no bounded linear operator $P : L^1 \to H^1$ for which $Pf = f$ for all $f \in H^1$.

Proof. Suppose such a P existed. Let $l_n(f)$ denote the nth Fourier coefficient of $P(f)$; then l_n is a bounded linear functional on L^1 and as a result we have

$$l_n(f(\theta)) = \int_0^{2\pi} f(\theta)\phi_n(\theta)d\theta,$$

Received by the editors March 9, 1960.