restricting the boundary points \(\alpha_1, \alpha_2 \) further than requiring them to belong to \([a, \alpha_2], [\alpha_2, b]\), respectively.

Conditions are not imposed on \(a_{11}(x), a_{nn}(x) \). If these functions are identically zero over \((\alpha_1, \alpha_2)\) Theorem 2 follows for weaker restrictions than (C), (D). For the \(a_{1f}(x), a_{ne}(x), f = 2, \ldots, n, e = 1, \ldots, n - 1 \), it is sufficient to require that the positive functions be nonnegative, the negative functions be nonpositive and \(a_{1n}(\alpha_2), a_{n1}(\alpha_2) > 0 \).

Auburn University

A MOORE SPACE ON WHICH EVERY REAL-VALUED CONTINUOUS FUNCTION IS CONSTANT

STEVE ARMENTROUT

F. B. Jones [2] recently gave an example of a Moore space \(\Lambda_\infty \) in which there exists a point \(x \) such that \(\Lambda_\infty \) is not completely regular at \(x \). It is easy to modify the construction used by Jones so as to obtain a Moore space \(A \) in which there exist distinct points \(a \) and \(b \) such that for every real-valued continuous function \(f \) on \(A, f(a) = f(b) \). Upon applying Urysohn's process of condensation of the singularities of the space \(A \) [4], in a manner similar to that used by Hewitt [1], there results a Moore space \(X \) on which every real-valued continuous function is constant.

Throughout this paper, \(J \) denotes the set of positive integers. A sequence is a function on \(J \), and if \(f \) is a sequence and \(n \in J \), then \(f_n \) denotes \(f(n) \).

By a Moore space is meant a topological space \(X \) whose topology has a basis consisting of sets termed regions, satisfying the following condition (axiom 13, that is, parts 1, 2, and 3 of axiom 1, of [3]): There exists a sequence \(G \) such that (1) if \(n \in J, G_n \) is a collection of regions covering \(X \), (2) if \(n \in J, G_{n+1} \subset G_n \), and (3) if \(r \) is a region, \(x \in r \), and \(y \in r \), then there exists a positive integer \(n \) such that if \(g \in G_n \) and \(x \in g \), then \(g \subset (r - \{x\}) \cup \{y\} \). The following characterization of a Moore space will be used in this paper: \(X \) is a Moore space if and only if \(X \) is a regular Hausdorff space for which there exists a sequence \(G \) of open coverings of \(X \) such that if \(U \) is an open set and

Presented to the Society, September 3, 1959; received by the editors February 2, 1960.
there exists a positive integer \(n \) such that if \(g \in G_n \) and \(p \in g \), then \(g \subseteq U \) [5].

1. **Construction of the space \(A \).** Jones, in his construction of the space \(A_\infty \), made use of a certain Moore space \(\Lambda \), an infinite sequence \(\Lambda_1, \Lambda_2, \Lambda_3, \cdots \) of disjoint spaces, each congruent with \(\Lambda \), and an ideal point \(p \) [2]. Adjacent terms of the sequence are pieced together along their boundaries in a certain way. The space \(A \) is to be constructed by using a doubly infinite sequence \(\cdots, \Lambda_{-2}, \Lambda_{-1}, \Lambda_0, \Lambda_1, \Lambda_2, \cdots \) of disjoint spaces, each congruent with \(\Lambda \), and two ideal points, \(a \) and \(b \). Adjacent terms of the sequence are pieced together along their boundaries as in the construction of \(A_\infty \). Neighborhoods of \(a \) are defined as those for \(p \) are in the case of \(A_\infty \), and neighborhoods of \(b \) are defined in an obvious manner. \(A \) is a Moore space of cardinal \(c \), and a slight modification of Jones' proof that \(A_\infty \) is not completely regular at \(p \) shows that if \(f \) is a continuous real-valued function on \(A \), then \(f(a) = f(b) \).

2. **Construction of the space \(X \).** Now there will be constructed a Moore space \(X \) on which every real-valued continuous function is constant. Consider a collection of \(c \) disjoint spaces, each homeomorphic with the space \(A \). This collection may be well-ordered as an order of ordinal number \(\Delta \), the initial ordinal of the cardinal \(c \); let \(A^1, A^2, A^3, \cdots, A^\lambda, \cdots \), \(\lambda < \Delta \), be one such order. If \(\lambda < \Delta \), then \(A^\lambda \) has cardinal \(c \) and may be well-ordered as an order of ordinal number \(\Delta \); let \(x_1^\lambda, x_2^\lambda, x_3^\lambda, \cdots, x_n^\lambda, \cdots, \beta_1 < \Delta, \beta_2 < \Delta, \beta_3 < \Delta, \cdots \), be one such order where \(x_1^\lambda \) is the point \(a \) of the space \(A^\lambda \) and \(x_2^\lambda \) is the point \(b \) of \(A^\lambda \).

Let \(Q \) be the set of all ordered quadruples \((\lambda_1, \beta_1; \lambda_2, \beta_2)\) where each of \(\lambda_1, \beta_1, \lambda_2, \beta_2 \) is an ordinal number less than \(\Delta \), and either \(\lambda_1 < \lambda_2 \), or \(\lambda_1 = \lambda_2 \) and \(\beta_1 < \beta_2 \). It can be shown by transfinite induction that there exists a one-to-one function \(\Gamma \) with domain \(Q \) and range the set of ordinals less than \(\Delta \) such that (1) \(\Gamma(1, 1; 1, 2) = 1 \) and \(\Gamma(\lambda_1, \beta_1; \lambda_2, \beta_2) > \lambda_2 \) for all elements of \(Q \) other than \((1, 1; 1, 2) \). Let \(\phi \) be a function such that

\[
\phi[x_1^{\Gamma(\lambda_1, \beta_1; \lambda_2, \beta_2)}] = \lambda_1 \quad \text{and} \quad \phi[x_2^{\Gamma(\lambda_1, \beta_1; \lambda_2, \beta_2)}] = \lambda_2.
\]

The function \(\phi \) maps \(x_1^\lambda, 1 < \lambda < \Delta \), into \(A^\gamma \) for some \(\gamma \) less than \(\lambda \), and similarly for \(x_2^\lambda \).

For each ordinal \(\lambda \) and each ordinal \(\beta, \lambda < \Delta \) and \(2 < \beta < \Delta \), \(x_\beta^\lambda \) is an initial point; \(x_1^\lambda \) and \(x_2^\lambda \) are also initial points.

Certain sequences of points of \(U_{\gamma < \Delta} A^\gamma \) are defined to be chains. \(C \) is a chain if and only if \(C \) is a sequence, \(x_{\beta_1}^\lambda, x_{\beta_2}^\lambda, x_{\beta_3}^\lambda, \cdots \), such that
\(\lambda_1 < \lambda_2 < \lambda_3 < \cdots < \Delta\), \(x^\lambda_1\) is an initial point, and if \(n \in J\), then
\[\phi(x^\lambda_{n+1}) = x^\lambda_n\]
Each chain contains one and only one initial point, and if \(x^\lambda_0\) is an initial point, then \(C^\lambda_0\) is the union of all chains with \(x^\lambda_0\) as an initial point. If \(x^\lambda_0\) and \(x^\lambda_1\) are two distinct initial points, then
\(C^\lambda_0\) and \(C^\lambda_1\) are disjoint. Further, if \(i\) is either 1 or 2, and \(1 < \lambda < \Delta\), then there is only one set \(C^\alpha_\lambda\) such that \(x^\lambda_i\) belongs to a chain of \(C^\alpha_\lambda\). If \(x^\lambda_0\) belongs to a chain of \(C^\alpha_\lambda\), then \(x^\lambda_i\) is a co-ordinate of \(C^\alpha_\lambda\). Let \(X\) be the collection of all sets \(C^\alpha_\lambda\) for \(\lambda < \Delta\) and \(\beta < \Delta\).

Now a topology for \(X\) will be constructed so that the resulting space is a Moore space. Suppose that \(\lambda\) is an ordinal, \(\lambda < \Delta\). The space \(A^\lambda\) is a Moore space. Let \(G^\beta\) be a sequence of collections of regions of the space \(A^\lambda\) satisfying axiom 13 relative to \(A^\lambda\). Suppose now that \(\beta\) is an ordinal, \(\beta < \Delta\). Let \(g^\lambda_1\) be a sequence of regions such that (1) if \(n \in J\), then \(x^\lambda_n \in g^\lambda_n\) and \(g^\lambda_n \subseteq G^\lambda_n\), (2) if \(n \in J\), then \((g^\lambda_{n(n+1)})^{-1} \subseteq g^\lambda_{n+1}\) and (3) if \(2 < \beta\), then \(x^\lambda_1 \notin (g^\lambda_{1n})^{-1}\) and \(x^\lambda_2 \notin (g^\lambda_{2n})^{-1}\). The sequences \(g^\lambda_1\) and \(g^\lambda_2\) are to satisfy the additional condition that
\[(g^\lambda_1)_{-1} \cap (g^\lambda_2)_{-1} = \emptyset\].

Regions for \(X\) will now be defined. Suppose that \(x \in X\). There exist an ordinal \(\lambda\), \(\lambda < \Delta\), and an ordinal \(\beta\), \(\beta < \Delta\), such that \(x = C^\alpha_\lambda\). Suppose that \(n \in J\). \(W^\lambda_{\beta n}\) is the set of all \(C^\alpha_\lambda\) which have initial points in \(g^\lambda_{\beta n}\). \(W^\lambda_{\beta n}\) is defined as follows: (a) If both \(x^\lambda_{1n}\) and \(x^\lambda_{2n}\) are co-ordinates of elements of \(W^\lambda_{\beta n}\), then \(W^\lambda_{\beta n}\) is the set of all \(C^\alpha_{n+1}\) with initial points in \((g^\lambda_{1n+1} \cup g^\lambda_{2n+1})^{-1}\). (b) If \(x^\lambda_{1n}\) is a co-ordinate of an element of \(W^\lambda_{\beta n}\) but \(x^\lambda_{2n}\) is not a co-ordinate of any element of \(W^\lambda_{\beta n}\), \(i, j = 1, 2; i \neq j\), then \(W^\lambda_{\beta n}\) is the set of all \(C^\alpha_{n+1}\) with initial point in \(g^\lambda_{1n+1}^{-1}\). (c) If neither \(x^\lambda_{1n}\) nor \(x^\lambda_{2n}\) is a co-ordinate of any element of \(W^\lambda_{\beta n}\), then \(W^\lambda_{\beta n} = \emptyset\).

Suppose that \(\nu\) is an ordinal, \(\lambda + \nu < \Delta\), and for each ordinal \(\mu\), \(\mu < \nu\), \(W^\mu_{\beta n}\) has been defined. Let \(Y^\lambda_{\beta n} = \cup_{\mu < \nu} W^\lambda_{\beta n}\). Then \(W^\lambda_{\beta n}\) is defined as follows: (a) If both \(x^\lambda_{1n}\) and \(x^\lambda_{2n}\) are co-ordinates of elements of \(Y^\lambda_{\beta n}\), then \(W^\lambda_{\beta n}\) is the set of all \(C^\alpha_{n+\nu}\) with initial point in the set \((g^\lambda_{1n+1} \cup g^\lambda_{2n+1})^{-1}\). (b) If \(x^\lambda_{1n}\) is a co-ordinate of an element of \(Y^\lambda_{\beta n}\) but \(x^\lambda_{2n}\) is not a co-ordinate of any element of \(Y^\lambda_{\beta n}\), \(i, j = 1, 2; i \neq j\), then \(W^\lambda_{\beta n}\) is the set of all \(C^\alpha_{n+\nu}\) with initial point in \(g^\lambda_{1n+1}^{-1}\). (c) If neither \(x^\lambda_{1n}\) nor \(x^\lambda_{2n}\) is a co-ordinate of any element of \(Y^\lambda_{\beta n}\), then \(W^\lambda_{\beta n} = \emptyset\).

Let \(w^\lambda_{\beta n} = \cap_{\delta \in \Delta} W^\lambda_{\beta \delta n}\). \(R\) is a region in \(X\) if and only if for some positive integer \(n\) and some element \(C^\Delta_\beta\) of \(X\), \(R\) is \(w^\lambda_{\beta n}\).

By making minor modifications in Hewitt’s proof [1], one may show that \(R\) is a regular Hausdorff space.

Suppose that \(n \in J\); let \(\mathcal{K}_n\) be the set of all \(w^\lambda_{\beta n}\) for all \(C^\beta_\delta\) belonging to \(X\). It is clear that if \(n \in J\), \(\mathcal{K}_n\) is an open cover of \(X\). It will now be shown that if \(\mathcal{U}\) is a region in \(X\) and \(p \in \mathcal{U}\), then there exists a
positive integer n such that if $h \in \mathcal{C}_n$ and $p \in h$, then $h \subseteq \mathcal{U}$. From this it follows that X is a Moore space.

Suppose that \mathfrak{U} is a region; for some λ, β, and positive integer n, $\mathfrak{U} = \mathfrak{W}^\lambda_{\beta n}$. Suppose that $p \in \mathfrak{U}$; for some μ and α, with $\lambda \leq \mu$, $p = C^\mu_{\alpha}$. There are two cases:

(1) $\lambda = \mu$. If $\lambda > 1$, then $\alpha > 2$ and there exists a positive integer m such that if $j \in J$ and $j > m$, then $x^\mu_{\alpha} \in (g^\lambda_{\beta j} \cup g^\lambda_{\beta j'})$. If $\lambda = 1$, take m to be 1. Now suppose that $k \in J$ and $k > m$. Suppose further that $h \in \mathcal{C}_k$ and $C^\lambda_{\alpha} \subseteq h$. Then for some γ, $h = \mathfrak{W}^\lambda_{\gamma k}$. For clearly C^λ_{α} does not belong to any $\mathfrak{W}^\sigma_{\alpha}$ for $\sigma > \lambda$. If there exists an ordinal σ, $\sigma < \lambda$, and an ordinal ϵ such that $C^\lambda_{\alpha} \subseteq \mathfrak{W}^\epsilon_{\beta n}$, then one of $x^\lambda_{1\alpha}$ and $x^\lambda_{2\alpha}$ is a co-ordinate of an element of $\mathfrak{W}^\epsilon_{\beta n}$, and $x^\lambda_{\alpha} \in (g^\lambda_{\beta j} \cup g^\lambda_{\beta j'})$. However, as $k > m$, $x^\lambda_{\alpha} \in (g^\lambda_{\beta j} \cup g^\lambda_{\beta j'})$.

Since $C^\lambda_{\alpha} \subseteq \mathfrak{W}^\lambda_{\beta n}$, then $x^\lambda_{\alpha} \in \mathfrak{W}^\lambda_{\beta n}$. As A^μ_{α} is a Moore space, there exists a positive integer q such that if $g \in C^\mu_{\alpha}$ and $x^\mu_{\alpha} \in g$, then $g \subseteq \mathfrak{W}^\gamma_{\gamma q}$; clearly q may be taken so that $q > m$. Now suppose that $h \in \mathcal{C}_q$ and $C^\lambda_{\alpha} \subseteq h$. Then as $q > m$, for some γ, $h = \mathfrak{W}^\lambda_{\gamma q}$; since $x^\lambda_{\alpha} \in \mathfrak{W}^\lambda_{\gamma q}$, then $g^\lambda_{\gamma q} \subseteq \mathfrak{W}^\lambda_{\beta n}$ and hence $\mathfrak{W}^\gamma_{\gamma q} \subseteq \mathfrak{W}^\lambda_{\beta n}$. Thus if $h \in \mathcal{C}_n$ and $C^\lambda_{\alpha} \subseteq h$, then $h \subseteq \mathfrak{U}$.

(2) $\lambda < \mu$. In this case, $\alpha > 2$. Since $C^\mu_{\alpha} \subseteq \mathfrak{W}^\mu_{\beta n}$, then one of $x^\mu_{1\alpha}$ and $x^\mu_{2\alpha}$ is a co-ordinate of an element of $\mathfrak{W}^\mu_{\beta n}$, and x^μ_{α} belongs to one of $g^\mu_{\beta n}$ and $g^\mu_{\beta n}$. Suppose $x^\mu_{i\alpha} \in g^\mu_{\beta n}$, $i = 1$ or 2.

There exists a positive integer m such that if $j \in J$ and $j > m$, then $x^\mu_{i\alpha} \in (g^\mu_{\beta j} \cup g^\mu_{\beta j'})$. Then, as in case (1), if $k \in J$, $k > m$, $h \in \mathcal{C}_k$, and $C^\mu_{\alpha} \subseteq h$, then for some γ, $h = \mathfrak{W}^\mu_{\gamma k}$. As A^μ_{α} is a Moore space, there exists a positive integer q such that if $g \in C^\mu_{\alpha}$ and $x^\mu_{i\alpha} \in g$, then $g \subseteq \mathfrak{W}^\gamma_{\gamma q}$; clearly q may be taken so that $q > m$. Now suppose that $h \in \mathcal{C}_q$ and $C^\mu_{\alpha} \subseteq h$. As $q > m$, for some γ, $h = \mathfrak{W}^\mu_{\gamma q}$; since $x^\mu_{i\alpha} \in \mathfrak{W}^\mu_{\gamma q}$, then $g^\mu_{\gamma q} \subseteq \mathfrak{W}^\mu_{\beta n}$ and therefore $\mathfrak{W}^\gamma_{\gamma q} \subseteq \mathfrak{W}^\mu_{\beta n}$. Thus if $h \in \mathcal{C}_n$ and $C^\mu_{\alpha} \subseteq h$, then $h \subseteq \mathfrak{U}$.

The space X is a Moore space; that every real-valued continuous function on X is constant may be proved exactly as in Hewitt [1].

REFERENCES

STATE UNIVERSITY OF IOWA