A MAXIMAL THEOREM

C. S. HERZ

Let X denote the unit circle and L^p, $1 < p < \infty$, the usual Lebesgue space. Given $f \in L^p$ there is a harmonic function u in the unit disc with L^p boundary value f. Set $f^*(x) = \sup_{r < 1} |u(r, x)|$. The Hardy-Littlewood Maximal Theorem asserts that there exists a constant B_p such that $\|f^*\|_p \leq B_p \|f\|_p$. A similar theorem is given in higher dimensions by H. E. Rauch [2] and K. T. Smith [3] where X is now the unit sphere in n-space. These results are obtained by first proving a maximal ergodic theorem and then passing over to the maximal theorem. The purpose of this note is to remark that the maximal theorem is a trivial deduction from a maximal ergodic theorem which is itself completely standard, so that, in effect, there is very little to prove.

Before presenting the general procedure, I give an example which illustrates everything. Let X be the real line and take $f \in L^p$. The harmonic function in the upper half plane with boundary values f is

$$h(t, x) = \int_{-\infty}^{\infty} Q(t, x - y)f(y)dy$$

where Q is the Poisson kernel, $Q(t, x) = \pi^{-1/2}(t^2 + x^2)^{-1}, t > 0$. We set $f^*(x) = \sup_{t > 0} |h(t, x)|$ and the relevant maximal theorem is $\|f^*\|_p \leq B_p \|f\|_p$. The only fact we need about the Poisson kernel is that the convolution operators $Q(t)$ form a semi-group having the symbolic form $Q(t) = \exp(-t\Lambda^{1/2})$ where $\Lambda^{1/2}$ is the positive square root of $\Lambda = -d^2/dx^2$. Now $P(t) = \exp(-t\Lambda)$ is a formal expression for the Gaussian semi-group of convolution operators having the Weierstrass kernel, $P(t, x) = (1/2)\pi^{-1/2}t^{-1/2} \exp\left\{-\frac{4t}{\pi}x^2\right\}$. Put

$$g(t, x) = \int_{-\infty}^{\infty} P(t, x - y)f(y)dy.$$

We evidently have the relation

$$h(s, x) = \int_{-\infty}^{\infty} \phi(s, t)g(t, x)dt$$

Presented to the Society, October 31, 1959; received by the editors May 3, 1960.

1 Research for this paper was supported by the NSF Contract No. G5253.

2 The original Hardy-Littlewood paper is in Acta Math. vol. 54 (1930) pp. 81-116. A convenient reference is [4, pp. 244-247]. Both this theorem and the generalization to spheres are listed as exercises in [1, Exercises 7 and 8, p. 718].
where \(\phi \) is determined by the equation
\[
\exp(-s\lambda^{1/2}) = \int_0^\infty \phi(s, t) \exp(-t\lambda) dt.
\]

It is to be noted that \(\phi \) is independent of the explicit nature of the kernels \(P \) and \(Q \). One easily calculates that \(t\phi(s, t) = \psi(s^{-2}t) \) where \(\psi(u) = \pi^{-1/2}(4u)^{-1/2} \exp\{-(4u)^{-1}\} \). What is important is that we have

(i) \[
\int_0^t |\phi(s, t)| dt \leq I,
\]

(ii) the total variation in \(t \) of \(t\phi(s, t) \) is not greater than \(V \), where \(I \) and \(V \) are constants independent of \(s \). Now one has
\[
|h(s, x)| \leq \int_0^\infty |\phi(s, t)| |g(t, x)| dt.
\]

Assume that \(\phi \), or some majorant of \(|\phi| \), satisfies (i) and (ii), and set
\[
a(t, x) = t^{-1} \int_0^\infty |g(u, x)| du,
\]
and put \(f(x) = \sup_{t>0} a(t, x) \). It is evident that
\[
|h(s, x)| \leq \int_0^\infty |\phi(s, t)| d_a(t, x) = \int_0^\infty a(t, x) |\phi(s, t)| dt
\]
\[
+ \int_0^\infty |t\phi(s, t)| d_a(t, x) \leq (I + 2V)f(x).
\]

Thus one concludes that \(\|f^*\|_p \leq (I + 2V)\|f\|_p \). Next, we observe that \(f \) is simply the supremum of the averages of \(|f| \) with respect to a probability semi-group corresponding to a measure-preserving flow on \(X \), in this case the flow is Brownian motion. Hence the maximal ergodic theorem\(^8\) is applicable; it says that for \(1 < p < \infty \), \(\|f\|_p \leq A_p \|f\|_p \). The maximal theorem, \(\|f^*\|_p \leq B_p \|f\|_p \), follows with \(B_p = (I + 2V)A_p \).

The specific deduction made thus far has little merit; the standard derivation of the Hardy-Littlewood Maximal Theorem, of \([4, p. 245]\) uses the same reasoning except that the underlying flow is uniform

\(^8\) Cf. \([1, Chapter VIII, especially Theorem 7, p. 693]\). Our indebtedness to the ideas there (which appeared earlier in J. Rat. Mech. Anal. vol. 5 (1956) pp. 129–178) is evident.
transformation rather than Brownian motion. However, it is clear that the argument persists in a quite general context, and we intend to put this generality to use.

Take for X any set, \mathcal{F} a Borel field of subsets of X, and μ a completely additive measure defined on \mathcal{F}. By a measure-preserving flow on X we mean the assignment to each $t > 0$ and $E \in \mathcal{F}$ of a subset E_t of X, measurable with respect to the canonical extension of μ, such that the measure of the symmetric difference of E_{t+h} and E_t tends to zero as h tends to zero from above. Let L^p be the Lebesgue space with respect to the measure μ; we confine our attention to the range $1 < p < \infty$. The flow induces a strongly continuous semi-group of operators $\{P(t)\}$ or L^p. Given $f \in L^p$ we form $g(t, x) = P(t)f(x)$ and $f(t) = \sup_{t > 0} t^{-1} \int_0^t |g(u, x)| \, du$. The maximal ergodic theorem states that there exist constants A_p such that $\|f\|_p \leq A_p \|f\|_p$. The operators $P(t)$ can be considered to be defined for all L^p spaces simultaneously; for brevity we shall call $\{P(t)\}$ a probability semi-group. What we have proved above is

Theorem. Let $\{P(t)\}$ be a probability semi-group defined on a measure space X and suppose $\{Q(s)\}, s > 0$, is a one-parameter family of operators subordinate to $\{P(t)\}$, i.e., $Q(s) = \int_0^s \phi(s, t) P(t) \, dt$. Let L^p be the Lebesgue space with respect to an invariant measure, and for $f \in L^p$ set $h(s, x) = Q(s)f(x), f^*(x) = \sup_{s > 0} |h(s, x)|$. If the subordinator $\phi(s, t)$, or some majorant of $|\phi|$, satisfies (i) and (ii) above then for $1 < p < \infty$ there exists a constant B_p such that $\|f^*\|_p \leq B_p \|f\|_p$.

For an application consider the unit sphere X in n-dimensional space and the L^p spaces with respect to the uniform measure. Given $f \in L^p$ we let $u(r, x)$ be the function harmonic in $r < 1$ with boundary values $f(x)$. Thus $\Delta u = 0$ where Δ is the Laplacian. We may write $\Delta = -r^{-n}(\partial^2/\partial r^2)(r^n(\partial/\partial r)) + r^{-2}\Lambda$ where Λ is the Beltrami operator on the unit sphere. It follows that $r \partial u/\partial r = \{((\Delta + c^2)^{1/2} - c\} u$. Set $h(s, x) = u(\exp(-s), x)$; then $h(s, x) = Q(s)f(x)$ where $Q(s)$ has the symbolic form $Q(s) = \exp\{s[\Delta + c^2]^{1/2} - c\}$. Let $\{P(t)\}$ be the semi-group $P(t) = \exp(-t\Lambda)$. This is a probability semi-group corresponding to Brownian motion on the sphere which is a measure-preserving flow with respect to the uniform measure. Given $f \in L^p$ we let $u(\exp(-s), x)$ be the function harmonic in $r < 1$ with boundary values $f(x)$. Thus $\Delta u = 0$ where Δ is the Laplacian. We may write $\Delta = -r^{-n}(\partial^2/\partial r^2)(r^n(\partial/\partial r)) + r^{-2}\Lambda$ where Λ is the Beltrami operator on the unit sphere. It follows that $r \partial u/\partial r = \{((\Delta + c^2)^{1/2} - c\} u$. Set $h(s, x) = u(\exp(-s), x)$; then $h(s, x) = Q(s)f(x)$ where $Q(s)$ has the symbolic form $Q(s) = \exp\{s[\Delta + c^2]^{1/2} - c\}$. Let $\{P(t)\}$ be the semi-group $P(t) = \exp(-t\Lambda)$. This is a probability semi-group corresponding to Brownian motion on the sphere which is a measure-preserving flow with respect to the uniform measure. Given $Q(s) = \int_0^s \phi(s, t) P(t) \, dt$ where the subordinator ϕ is determined by $\exp\{s[\Delta + c^2]^{1/2} - c\} = \int_0^s \phi(s, t) \exp(-t\Lambda) \, dt$. Using the calculation given above we find $t \phi(s, t) = \exp(cs - c^2t)\psi(s^2t)$ whence it follows that (i) and (ii) are satisfied. The result is

Corollary. Suppose $f \in L^p$ on the unit sphere and $u(r, x)$ is the
function harmonic in the unit ball with boundary values \(f(x) \). Then if \(1 < p < \infty \) there exists a constant \(B_p \) such that \(\|f^*\|_p \leq B_p \|f\|_p \) where \(f^*(x) = \sup_{r<1} |u(r, x)| \).

We turn now to the question of the validity of the maximal theorem for rather general probability semi-groups. Suppose \(\{P(t)\} \) is a probability semi-group with symbolic form \(P(t) = \exp(-t\Lambda) \). If \(\chi \) is a function alternating of order \(\infty \), i.e., a completely monotone mapping, on \((0, \infty)\) and \(\chi(0) = 0 \) then \(\{Q(t)\} \) is again a probability semi-group where \(Q(s) = \exp\{-s\chi(\Lambda)\} \). A rigorous discussion of the infinitesimal generators \(\Lambda \) and \(\chi(\Lambda) \) is irrelevant here since what is meant is that \(Q(s) = \int_0^s \phi(s, t)P(t)dt \) where \(\phi \) is determined by \(\exp\{-s\chi(\Lambda)\} = \int_0^s \phi(s, t)\exp(-t\Lambda)dt \). (In general we should write \(\int_0^s \phi(s, t)dt \) for \(\phi(s, t) \), where for each \(s \), \(\phi(s, t) \) is a function increasing from 0 to 1 on \([0, \infty]\).) Such a process of subordination takes probability semi-groups into probability semi-groups. We can assert the maximal theorem for the semi-group \(\{Q(t)\} \) if \(\phi \) satisfies (i) and (ii) above, (i) is trivial since \(\phi(s, t) \geq 0 \) and \(\int_0^s \phi(s, t)dt = 1 \). It remains to decide for what \(\chi \)'s (ii) holds. We shall now show that for \(\chi(x) = x^c, 0 < c < 1 \), (ii) is valid. Here \(\int_0^s \phi(s, t)\exp(-t\Lambda)dt = \exp(-s\lambda^c) \) so that \(t\phi(s, t) = \psi_c(s^{-1/\epsilon}) \) where \(\psi_c \) is determined by

\[
\int_0^\infty \psi_c(u) \exp(-u\lambda)du = c\lambda^{c-1} \exp(-\lambda^c).
\]

(The \(\psi \) used above corresponds to \(c = 1/2 \).) Inversion of Laplace transforms gives

\[
\psi_c(u) = \pi^{-1} \int_0^\infty \exp\{x^{1/\epsilon}u \cos \theta - x \cos \theta c\}
\cdot \sin\{x^{1/\epsilon}u \sin \theta - x \sin \theta c + \theta c\} dx
\]

where \(\theta \) may be chosen at will in the range \(\pi/2 \leq \theta \leq \pi \). Changing variables we calculate the derivative as

\[
\psi'_c(u) = c\pi^{-1} \int_0^\infty \exp\{yu \cos \theta - y^c \cos \theta c\}
\cdot \sin\{yu \sin \theta - y^c \sin \theta c + \theta(c + 1)\} y^c dy.
\]

Taking \(\theta = \pi \) we have the estimate for \(u > 2 \):

\[
|\psi'_c(u)| \leq c\pi^{-1} \int_1^\infty \exp\{- (1/2) yu\} y^c dy = O(u^{-1-c}).
\]

Taking \(\theta = \pi/2 \), we obtain the uniform bound
\[
|\psi_c'(u)| \leq c\pi^{-1} \int_0^\infty \exp\{-y^c \cos(1/2)\pi c\} y^c dy.
\]

Therefore \(\int_0^\infty |\psi_c'(u)| \, du = V < \infty\). The total variation of \(t\phi(s, t)\) is \(V\), and so (ii) holds.

The reasoning of the last paragraph establishes

Theorem. Suppose there is a measure-preserving flow on a measure space \(X\) inducing probability semi-groups \(\{Q(t)\}, t > 0\), on the Lebesgue spaces \(L^p\) with respect to an invariant measure. If the family of operators \(\{Q(t)\}\) is subordinate to a probability semi-group \(\{P(t)\}\) via the formal relation \(Q(t) = \exp(-t\Delta^c), P(t) = \exp(-t\Delta)\), where \(0 < c < 1\), then given \(f \in L^p\) and \(f^*(x) = \sup_{t > 0} |Q(t)f(x)|\) we have for \(1 < p < \infty\), \(\|f^*\|_p \leq B_p \|f\|_p\), where the bounds, \(B_p\), depend only on \(p\) and \(c\).

Bibliography

Cornell University