ON THE NUMBERS $\phi(a^n \pm b^n)$

A. ROTKIEWICZ

The Euler ϕ-function, $\phi(m)$, denotes the number of positive integers not greater than m which are relatively prime to m. N. G. Guderson (see [1]) generalizing the result of U. Scarpis (see [2]), that $n|\phi(p^n - 1)$, shows that, if $a > b$, and $m = \text{the product of the distinct prime factors of } n$, then

$$\frac{n^2}{m} | \phi(a^n - b^n), \text{ also } n | \phi(a^n + b^n).$$

We shall prove an even more general theorem as follows:

Theorem 1. If a, b, n, are natural numbers, $a > b$, $n \geq 1$, and $\theta(n)$ denotes the number of divisors of n, then

$$n^{\theta(n)/2} | \phi(a^n - b^n).$$

We give here a proof of Theorem 1 based on the following theorem (see [3]).

Theorem T. If a, b, n are natural numbers, $a > b$, $(a, b) = 1, n > 2$, then $a^n - b^n$ is divisible by at least one prime p_n (so called “primitive divisor”) of the form $nk + 1$, such that p_n does not divide any of the integers $a^r - b^r$ ($r = 1, 2, \cdots, n - 1$); the case $a = 2, b = 1, n = 6$ provides the sole exception.

Proof of Theorem 1. Let $(a, b) = d > 1, a > b$, then $a = ad, b = bd$, $(a_1, b_1) = 1$ and $a_1 > b_1$. Since if $a | b$, then $\phi(a) | \phi(b)$, and $a^n - b^n | a^r - b^r$ it follows that $\phi(a^n - b^n) | \phi(a^n - b^n)$. Therefore we can suppose that a, b are relatively prime.

1. Let $(a, b) = 1, a > b, 2|n$.

By Theorem T for each $1 < i | n, 2 | n$ the number $a^i - b^i$ has a primitive divisor p_i of the form $ik + 1$ such that p_i does not divide $a^r - b^r$ for $0 < r < i$. It follows that $(p_i, p_j) = 1$ for $i > j$.

Because $(p_i, p_j) = (p_j, p_i)$, therefore $(p_i, p_j) = 1$ for $i \neq j$. So since $a^i - b^i | a^n - b^n$ for $i | n$, we obtain

$$\prod_{1 < i | n} p_i | a^n - b^n, \text{ where } (p_i, p_j) = 1 \text{ if } i \neq j.$$

By Theorem T, p_i for $i > 2, 2 | n$ has the form $ik + 1$, hence $i | \phi(p_i)$ and $\prod_{1 < i | n} \phi(p_i) = \phi(\prod_{1 < i | n} p_i)$, since if a_1, a_2, \cdots, a_k are relatively

Received by the editors May 11, 1960.

419
prime in pairs then \(\phi(a_1 \cdot a_2 \cdots a_k) = \phi(a_1) \cdot \phi(a_2) \cdots \phi(a_k)\). The product of all divisors of \(n\) is \(n^{\sigma(n)/2}\), where \(\sigma(n)\) denotes the number of divisors of \(n\) (see [4]).

From these remarks it follows that

\[
(3) \quad n^{\sigma(n)/2} = \prod_{i \mid n} i \prod_{i < \mid n} \phi(p_i) = \phi \left(\prod_{i < \mid n} p_i \right) | \phi(a^n - b^n)
\]

and Theorem 1 holds.

2. Suppose that \(2 \mid n\) and that \(p_6\) does not exist. Then by Theorem T, \(a = 2, b = 1, 6 \mid n\), hence

\[
(4) \quad \prod_{6 < \mid n} p_i \mid 2^n - 1
\]

where \(p_i\) denotes the primitive divisor of the number \(2^i - 1\). Since for \(6 \mid n\), we have \(2^6 - 1|2^n - 1\), also \((2^6 - 1, p_i) = 1\) for \(i > 6\), therefore from (4) it follows that

\[
n^{\sigma(n)/2} = \prod_{i \mid n} i = 36 \prod_{6 < \mid n} i \mid \phi(2^6 - 1) \cdot \phi \left(\prod_{6 < \mid n} p_i \right)
= \phi \left[(2^6 - 1) \cdot \prod_{6 < \mid n} p_i \right] | \phi(2^n - 1).
\]

3. If \(2 \mid n\) and if \(p_6\) exists, then

\[
n^{\sigma(n)/2} = 2 \cdot \prod_{2 < \mid n} i \mid \phi(a^2 - b^2) \cdot \phi \left(\prod_{2 < \mid n} p_i \right)
= \phi \left[(a^2 - b^2) \cdot \prod_{2 < \mid n} p_i \right] | \phi(a^n - b^n)
\]

because \(2|\phi(n)\) for \(n > 2\), \(a^2 - b^2 \geq a + b \geq 2 + 1 = 3\). Theorem 1 is thus completely proved.

Example. By Guderson's Theorem, we have \((240^3/30)|\phi(a^{240} - b^{240})\) for \(a > b\), by Theorem 1,

\[
1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 8 \cdot 10 \cdot 12 \cdot 15 \cdot 16 \cdot 20 \cdot 24 \cdot 30 \cdot 40 \cdot 48 \cdot 60 \cdot 80 \cdot 120 \cdot 240
= 240^{10} | \phi(a^{240} - b^{240})
\]

By T a number \(a^{2n} - b^{2n}\) for \(n > 1\), \((a, b) = 1, a > b\), has a primitive divisor \(p_{2n}\) of the form \(2nk + 1\), except when \(a = 2, b = 1, n = 3\).

Since \(p_{2n} \mid a^{2n} - b^{2n} = (a^n - b^n)(a^n + b^n)\) also \(p_{2n} \mid a^x - b^x\) for \(0 < x < 2n\), therefore \(p_{2n} \mid a^n + b^n\). If \(p_{2n} \mid a^x + b^x\) for \(0 < x < n\), then \(p_{2n} \mid a^x - b^x\) for \(0 < x < 2n\), which is impossible, because by hypothesis \(p_{2n}\) is a primitive divisor of \(a^{2n} - b^{2n}\). Therefore,
Theorem T'. If a, b, n are natural numbers, $a > b$, $(a, b) = 1$, $n > 1$, then $a^n + b^n$ is divisible by at least one prime p of the form $2nk + 1$, such that p does not divide any of the integers $a^r + b^r$ ($r = 1, 2, \cdots, n - 1$); the case $a = 2$, $b = 1$, $n = 3$ provides the only exception.

Theorem 2. If a, b, n are natural numbers, $a > b$, $n = 2^\alpha n_1$, where $(2, n_1) = 1$, $\alpha \geq 0$, then

\begin{align*}
(4) \quad (2^{\alpha+2} \cdot n)^{(n_1)/2} & \mid \phi(a^n + b^n) \quad \text{for } n \neq 3 \cdot (2k + 1), \\
(5) \quad \frac{1}{2} (2^{\alpha+2} \cdot n)^{(n)/2} & \mid \phi(a^n + b^n) \quad \text{for } n = 3 \cdot (2k + 1), \quad (k = 1, 2, \cdots).
\end{align*}

This theorem follows from Theorem T' in the same manner that Theorem 1 follows from Theorem T.

References

Institute of Mathematics, Warsaw University, Poland