CARTWRIGHT'S THEOREM ON FUNCTIONS BOUNDED AT THE INTEGERS

H. C. LIU AND A. J. MACINTYRE

1. The theorem of Cartwright [4] that for functions of exponential type not exceeding \(k < \pi \) bounded at the integers

\[
\sup_{-\infty < s < +\infty} |f(x)| \leq A(k)M, \quad M = \sup |f(n)|, \quad n = 0, \pm 1, \pm 2, \ldots
\]

has been followed by many estimates of the value of \(A(k) \) [1; 3; 5; 6]. We shall generally mean by \(A(k) \) its smallest possible value. It has been shown [3] that as \(k \) approaches \(\pi \), \(A(k) \) must tend to infinity like \(\log \{1/(\pi - k)\} \). For \(k \) near \(\pi \) the estimates of \(A(k) \) from above and below are in close agreement [5]. But for small \(k \), for example \(0 < k < \pi/2 \) we have only [1; 3]

\[
1 \leq A(k) \leq 2 + \frac{\pi}{3(\pi - k)}.
\]

The lower estimate can be improved. The function \(f(x) = \sin(\pi x/N) \) is of type \(\pi/N \) and if \(N \) is an odd integer \(\sup |f(n)| = \cos(\pi/2N) \) while \(\sup |f(x)| = 1 \). At any rate for some small values of \(k \) we have

\[
A(k) \geq \sec(k/2).
\]

It is a very natural conjecture that \(A(k) \) tends to unity as \(k \) tends to zero.

We are able to establish this conjecture in the following way.

Given the existence of \(A(k) \) and an upper estimate \(A_0(k) \) it follows from Bernstein's theorem [2, p. 206] that

\[
|f'(x)| \leq kA_0(k)M, \quad |f''(x)| \leq k^2A_0(k)M, \ldots
\]

Use of these inequalities in various ways leads to different estimates for \(A(k) \), the best being

\[
A(k) \leq (1 - k^2/8)^{-1}, \quad (0 < k < 2^{1/3}),
\]

\[
A(k) \leq 2/(3 - k), \quad (2 < k < 3).
\]

Comparison with (1) shows that for small \(k \) our estimate (3) is asymptotically correct. The upper and lower estimates are each \(1 + k^2/8 + O(k^4) \). For \(k = \pi/2 \) we have \(A(\pi/2) \geq 2^{1/2} \), which is also ob-

Presented to the Society, April 23, 1960; received by the editors April 6, 1960 and, in revised form, June 1, 1960.

460
CARTWRIGHT'S THEOREM

461

tained in [4]. The estimate (3) is numerically 1.446 which exceeds \(2^{1/2}\) by less than 3 per cent.

2. If the inequality (2) is integrated between \(x\) and the nearest integer \(n\) we have

\[
|f(x) - f(n)| \leq |x - n| \cdot kA_0(k)M \leq kA_0(k)M/2
\]

and hence

\[
|f(x)| \leq \left\{1 + kA_0(k)/2\right\} M.
\]

The new constant \(1 + kA_0(k)/2\) will be less than \(A_0(k)\) if \(k < 2\) and \(A_0(k) > 1 + kA(k)/2\) or \(A_0(k) > 2/(2 - k)\).

We can infer that

\[
|f(x)| \leq 2M/(2 - k)
\]

by an iterative argument. Set

\[
A_1(k) = 1 + kA_0(k)/2, \quad A_{n+1}(k) = 1 + kA_n(k)/2.
\]

Evidently

\[
|f(x)| \leq A_n(k)M = \left\{2/(2 - k) + (k/2)^n[A_0(k) - 2/(2 - k)]\right\} M.
\]

Since \(n\) can be arbitrarily large,

\[
|f(x)| \leq 2M/(2 - k).
\]

3. This simple argument is sufficient to establish the conjecture that \(A(k)\) tends to unity as \(k\) tends zero.\(^1\) A slight improvement is obtained by using a variant of Bernstein's theorem [2, p. 214] namely that if \(f(z)\) is an entire function of exponential type \(k\) bounded on the real axis then for \(0 < 2\delta < \pi/k\)

\[
|f(t + \delta) - f(t - \delta)| \leq 2 \sin (\delta k) \sup |f(x)|.
\]

If this inequality is used with \(x = t \pm \delta\) and \(t \mp \delta\) the nearest integer, in place of (5) then \(\delta \leq 1/4\) and

\[
\sup |f(x)| \leq M + 2 \sin (k/4)A_0(k)M.
\]

Arguing as before we now infer that

\[
\sup |f(x)| \leq \left\{1 - 2 \sin (k/4)\right\}^{-1} \sup |f(x)|,
\]

this inequality being valid for \(0 < k < 2\pi/3\).

\(^1\) R. P. Boas, Jr. gives us another proof. Suppose \(pk < \pi, p\) is an integer; then \(f(x)^p\) is of type \(pk\) and \(|f(x)|^p \leq M^p\). So \(|f(x)| \leq A(pk)M^p, |f(x)|^p \leq A(pk)^{1/p}M^p\).
4. Lagrange's interpolation formula [7]

\[f(x) = \frac{x - b}{a - b} f(a) + \frac{x - a}{b - a} f(b) + \frac{(x - a)(x - b)}{2} f''(\xi), \quad |\lambda| \leq 1, \]

may also be used with \(a = n < x < b = n + 1 \).

Since \(|f''(x)| \leq k^2 A_0(k) M \) by repeated use of Bernstein's theorem, we have

\[|f(x)| \leq M + (x - a)(b - x)k^2 A_0(k)M/2 \leq M + k^2 A_0(k)M/8. \]

This leads to the estimate

\[\sup |f(x)| \leq (1 - k^2/8)^{-1} \sup |f(n)| \]

valid for \(k < 2^{3/2} \).

It may be noted that if \(k > 2 \) our use of Lagrange's interpolation is inferior to the more elementary inequality

\[|f(x) - f(n)| \leq |x - n| k A_0(k) M \]

when \(|x - n| < 1/2 - 1/k \). If we use (7) in the intervals \(n \leq x \leq n + 1/2 - 1/k, n + 1 - (1/2 - 1/k) \leq x \leq nx + 1 \) and (6) for \(a \leq x \leq b \) with \(a = n + 1/2 - 1/k \) and \(b = n + 1 - (1/2 - 1/k) \), we evidently obtain

\[|f(x)| \leq M + (1/2 - 1/k)k A_0(k)M + k^{-2}k^2 A_0(k)M/2. \]

This leads to the inequality

\[\sup |f(x)| \leq \frac{2}{3 - k} \sup |f(n)| \]

valid for \(2 < k < 3 \).

References

University of Cincinnati