Theorem 1. A linear operator T is compact if and only if it is a cluster point for the topology α of a sequence $\{F_n\}$ of continuous linear operators with finite dimensional range.

Remarks. To place the theorem in context consider all operators as mapping the Banach space X into the Banach space Y and consider the topology α to be that of almost uniform convergence on the unit ball of X utilizing the norm topology on Y. The second theorem gives a similar result for weakly compact operators. All definitions and background information can be found in the two references.

Proof of Theorem 1. Assuming the sequence $\{F_n\}$ to have T as a cluster point, there is a subnet $\{F_{\gamma}, \gamma \in G\}$ converging to T for the topology α. The second adjoint operators $\{F_{\gamma}^{**}, \gamma \in G\}$ form a Cauchy net for the topology of almost uniform convergence on the unit ball S^{**} of X^{**} utilizing the norm topology on Y^{**} [1, Theorem 4.1]. Define a linear operator P_0 which agrees with T^{**} on the image of A, while for all other x^{**} in X^{**}, $P_0(x^{**}) = \lim_{\gamma} F_{\gamma}^{**}(x^{**})$.

Consider an arbitrary positive number ε and a net $\{x^{**}_0, \gamma \in D\}$ in the image of S in X^{**} converging to a point x^{**}_0 in X^{**} for the X^* topology. There exist δ_0 in D and $\gamma_1, \gamma_2, \ldots, \gamma_k$ in G such that

$$\min_{i=1, 2, \ldots, k} \|F_0(x^{**}_0) - F_{\gamma_i}^{**}(x^{**}_0)\| < \frac{\varepsilon}{3}$$

for all $\delta > \delta_0$, and

$$\|F_{\gamma_i}^{**}(x^{**}_0) - F_{\gamma_i}^{**}(x^{**})\| < \frac{\varepsilon}{3}$$

for $i=1, 2, \ldots, k$ and all $\delta > \delta_0$, and $\|F_{\gamma_i}^{**}(x^{**}_0) - F_0(x^{**}_0)\| < \varepsilon/3$ for $i=1, 2, \ldots, k$. Thus $\|F_0(x^{**}_0) - F_0(x^{**}_0)\| < \varepsilon$ for all $\delta > \delta_0$ and F_0 is continuous for the X^* topology on S^{**} and the norm topology on Y^{**}. Therefore F_0 is T^{**} and T is compact.

For the converse let \mathcal{P} be the directed set composed of all continuous projections with finite dimensional range in Y, the order being determined by the inclusion ordering on their ranges. The net $\{P^{**}T^{**}, P \in \mathcal{P}\}$ converges pointwise to T^{**} on S^{**} and a known theorem for continuous functions says that due to the metric topology on Y^{**} and the compactness of S^{**} the net can be replaced by a

Received by the editors June 6, 1960.

1 This research was supported by the National Science Foundation, Grant 9414.

392
sequence \(\{P_nT^*\} \) having \(T^* \) as a cluster point.\(^2\) \(T^* \) must also be a cluster point of the sequence for the topology of almost uniform convergence on \(S^* \) with the norm topology on \(Y^* \) [1, Theorem 4.2]. Therefore it is concluded that \(T \) is a cluster point of the sequence \(\{P_nT\} \) for the topology \(\alpha \).

By omitting the sequence and resorting to the topology \(\beta \), almost uniform convergence on the unit ball of \(X \) with the weak topology on \(Y \), the same line of reasoning gives Theorem 2.

Theorem 2. A linear operator \(T \) is weakly compact if and only if it is the limit point for the topology \(\beta \) of a net \(\{F_\gamma, \gamma \in G\} \) of continuous linear operators with finite dimensional range.

References

University of Maryland

\(^2\) The author is unable to locate a reference. A version of the theorem appeared at one time in a manuscript copy of J. L. Kelley's book on linear topological spaces. The statement is as follows. "Let \(F \) be a subset of the space of continuous functions with compact domain \(S \) and range in a metric space. If \(f \) is in the closure of \(F \) for the topology of pointwise convergence, then there is a sequence in \(F \) having \(f \) as a cluster point."