SEQUENCES OF HOMEOMORPHISMS ON THE n-SPHERE

M. K. FORT, JR.1

1. Introduction. In his recent book of mathematical problems, S. Ulam (see [1, p. 46]) states the following question as one which he and Borsuk have considered:

Given an arbitrary closed subset C of an n-sphere S, $n>0$, does there exist a sequence H_1, H_2, H_3, \cdots of homeomorphisms of S onto itself such that for every p of S, $\lim_{k \to \infty} H_k(p) \exists$ and is in C, and every point of C is such a limit?

This problem also occurs in the original Scottish Book, along with the remark that Borsuk has solved the problem for the case in which S is two-dimensional.

In this note an affirmative answer is obtained for the above question in the general case. The proof leans heavily upon a result which the author obtained in [2].

2. Admissible polyhedra. Let Σ be the set of all closed n-cubes which are contained in the euclidean n-space R^n and whose edges are parallel to the coordinate axes.

If $J \subset \Sigma$, a subset A of the boundary of J is an α-set of J if A is the union of a collection of $(n-1)$-dimensional faces of J and for some such face σ, σ is contained in A while the $(n-1)$-dimensional face opposite σ is not contained in A.

A polyhedron P is admissible if there exists a sequence P_1, \cdots, P_k of polyhedra such that: $P_1 \subset \Sigma$, $P_k = P$, and for each $i = 1, \cdots, k-1$, $P_{i+1} = P_i \cup J_i$ where $J_i \subset \Sigma$ and $P_i \cap J_i$ is an α-set of J_i.

Presented to the Society, August 30, 1960 under the title The limit of a sequence of homeomorphisms of S^n onto itself; received by the editors June 22, 1960.

1 The author is an Alfred P. Sloan Research Fellow.
Lemma 1. If \(P \) is an admissible polyhedron, \(J \subseteq \Sigma \), \(P \cap J \) is an \(\alpha \)-set of \(J \), and \(U \) and \(V \) are open sets which contain \(J \) and \(P \) respectively, then there exists a homeomorphism \(h \) of \(R_n \) onto itself such that \(h[P \cup J] \subseteq V \) and \(h \) is the identity on \(R^n - U \).

Proof. There is an \((n-1)\)-dimensional face \(\sigma \) of \(J \) such that \(\sigma \subseteq P \cap J \) and \(\sigma' \subseteq P \cap J \), where \(\sigma' \) is the face of \(J \) which is opposite \(\sigma \). We may assume without loss of generality that \(R^n = R \times R^{n-1} \) and that \(J \) is situated so that \(\sigma \subseteq \{0\} \times R^{n-1} \) and \(\sigma' \subseteq \{1\} \times R^{n-1} \). There exists \(\epsilon > 0 \), a closed set \(M \) which is contained in the projection of \(\sigma \) onto \(R^{n-1} \), and an open set \(W \supseteq M \) in \(R^{n-1} \) such that \([\epsilon, 1] \times M \subset J - V \), \((0, 1+\epsilon) \times W \) is disjoint from \(P \), and \((0, 1+\epsilon) \times W \subset U \).

By Urysohn’s lemma, there exists a continuous function \(\phi \) on \(R^{n-1} \) into \([\epsilon, 1]\) such that \(\phi(x) = \epsilon \) for \(x \in M \) and \(\phi(x) = 1 \) for \(x \in R^{n-1} - W \).

We now define \(h \) as follows: \(h \) is the identity on \(R^n - (0, 1+\epsilon) \times W \), and if \(x \in W \) then \(h \) maps the segment from \((0, x)\) to \((1, x)\) linearly onto the segment from \((0, x)\) to \((\phi(x), x)\) and \(h \) maps the segment from \((1, x)\) to \((1+\epsilon, x)\) linearly onto the segment from \((\phi(x), x)\) to \((1+\epsilon, x)\). It is easy to see that \(h \) has the desired properties.

Lemma 2. If \(G \) is a connected, open subset of \(R^n \), \(P \subseteq G \) is an admissible polyhedron, and \(Q \subseteq G \) is a nonempty open set, then there exists a homeomorphism \(H \) of \(R^n \) onto \(R^n \) such that \(H[P] \subseteq Q \) and \(H \) is the identity on \(R^n - G \).

Proof. There exists a sequence \(P_1, \ldots, P_k \) of admissible polyhedra such that \(P_i \subseteq \Sigma \), \(P_k = P \), and for each \(i = 1, \ldots, k-1 \), we have \(P_{i+1} = P_i \cup J_i \) where \(J_i \subseteq \Sigma \) and \(P_i \cap J_i \) is an \(\alpha \)-set of \(J_i \). It is obvious that there is a homeomorphism \(h_1 \) of \(R^n \) onto \(R^n \) such that \(h_1 \) is the identity outside \(G \) and \(h_1[P_i] \subseteq Q \). Because of continuity of \(h_1 \), there is an open set \(V_1 \supseteq P_1 \) such that \(h_1[V_1] \subseteq Q \). By Lemma 1, there is a homeomorphism \(h_2 \) of \(R^n \) onto \(R^n \) such that \(h_2 \) is the identity outside \(G \) and \(h_2[P_2] \subseteq V_1 \), and by continuity of \(h_2 \) there is an open set \(V_2 \supseteq P_2 \) such that \(h_2[V_2] \subseteq V_1 \). Continuing in this manner, we obtain open sets \(V_i \supseteq P_i \) for each \(i \), and homeomorphisms \(h_i \) of \(R^n \) onto \(R^n \) which are the identity outside \(G \) and which satisfy \(h_{i+1}[V_{i+1}] \subseteq V_i \). The composite homeomorphism \(H = h_1 h_2 \cdots h_k \) has the desired properties.

3. The main result.

Theorem. Let \(S \) be an \(n \)-sphere, \(n > 0 \), and let \(C \) be a nonempty closed subset of \(S \). Then there exists a sequence \(H_1, H_2, H_3, \ldots \) of homeomor-
homeomorphisms of S onto itself such that $H_k(p) = p$ for each $p \in C$ and each positive integer k, and $\lim_{k \to \infty} H_k(p)$ exists and is in C for each $p \in S - C$.

Proof. Choose a point $q \in C$ and let Φ be a homeomorphism of $S - \{q\}$ onto euclidean n-space \mathbb{R}^n. We define $C^* = \Phi[C - \{q\}]$. We are going to define a sequence h_1, h_2, h_3, \cdots of homeomorphisms of \mathbb{R}^n onto itself.

We enumerate the components of $\mathbb{R}^n - C^*$ in a sequence G_1, G_2, G_3, \cdots and choose a point p_k in the boundary of G_k for each positive integer k. (We assume that $\mathbb{R}^n - C^*$ has an infinite number of components, since the case in which $\mathbb{R}^n - C^*$ has a finite number of components can be handled in a similar manner.)

It follows from the theorem proved in [2] that there exist sets $P(k, j)$ for k and j positive integers such that: each set $P(k, j)$ is a closed topological n-cell, $P(k, 1) \subset P(k, 2) \subset P(k, 3) \subset \cdots$ for each k, and $G_k = \bigcup_{j=1}^{\infty} P(k, j)$ for each k. It follows from the construction used in [2] that the sets $P(k, j)$ may be chosen so as to be admissible polyhedra, and we assume that this has been done. We choose non-empty open sets $Q(k, j)$ for all positive integers k and j so that $Q(k, j) \subset G_k$ and $\lim_{j \to \infty} Q(k, j) = \{p_k\}$. It is now easy to use Lemma 2 to construct for each positive integer k a homeomorphism h_k of \mathbb{R}^n onto itself such that: $h_k[P(i, k)] \subset Q(i, k)$ for $1 \leq i \leq k$, and h_k is the identity on $\mathbb{R}^n - \bigcup_{i=1}^{k} G_i$. It is easy to see that $h_j(x) = x$ for all $x \in C^*$ and all j, and that $\lim_{j \to \infty} h_j(x) = p_k \in C^*$ for $x \in G_k$.

The desired homeomorphisms of S onto S are now obtained by defining

$$H_k(p) = \begin{cases} q & \text{for } p = q, \\ \Phi^{-1} h_k \Phi(p) & \text{for } p \in S - \{q\}. \end{cases}$$

Bibliography

The University of Georgia