A BANACH SPACE CHARACTERIZATION OF
PURELY ATOMIC MEASURE SPACES

R. R. PHELPS

It is well known [4, p. 265; 3] that the space $L_1[0, 1]$ is not isomorphic with a conjugate space. At the other extreme, it is also well known that l_1 is isometric with the conjugate space of c_0. Each of these is an example of a space of all real-valued integrable functions over a measure space (T, μ), a major difference between them being that the measure space underlying $L_1[0, 1]$ has no atoms, while that underlying l_1 is purely atomic. It is natural to conjecture that a space $L_1(T, \mu)$ is isomorphic with a conjugate space if and only if (T, μ) is purely atomic; we will show that this conjecture is false, although it is true for separable L_1 spaces. We prove this result, together with one of our characterizations of purely atomic (T, μ), by using the notion of differentiability of vector-valued functions of bounded variation on $[0, 1]$. (This was the method employed by Gelfand [4] in proving the result cited above.) A related result is given in terms of locally uniformly convex spaces [8].

Let (T, μ) be a measure space. (We do not assume that T is measurable.) An atom $A \subset T$ is a measurable set such that $0 < \mu(A) < \infty$, and for each measurable set $B \subset A$, either $\mu(B) = 0$ or $\mu(B) = \mu(A)$. We will consider two atoms to be the "same" if they differ by a set of measure zero. A set S of positive finite measure is purely atomic if the set $S = \bigcup \{A \subset S: A$ is an atom$\}$ has measure zero. (Since atoms are essentially disjoint, μ is countably additive, and $\mu(S) < \infty$, S can contain at most countably many atoms, and hence the above set is measurable.) We say that the measure space (T, μ) is purely atomic if every subset $S \subset T$ of positive finite measure is purely atomic. We denote by \mathcal{A} the collection of all atoms $A \subset T$. There are doubtless other possible definitions of "purely atomic"; that the one given here is reasonable is shown by the following lemma.

Lemma. If (T, μ) is purely atomic, then $L_1(T, \mu)$ is isometric with $l(\mathcal{A})$ (and hence is a conjugate space).

Proof. The space $l(\mathcal{A})$ is the set of all real functions y on \mathcal{A} such that $\|y\| = \sum_{A \in \mathcal{A}} |y(A)|$ is finite, the summation being taken over the directed system of all finite subsets of \mathcal{A}. (See [2] for a proof that $l_1(\mathcal{A})$ is isometric with the conjugate space of $c_0(\mathcal{A})$.) We first show

Received by the editors May 9, 1960.

1 National Science Foundation Postdoctoral Fellow.
that any σ-finite subset S of \mathbb{R} is purely atomic, i.e., if $S = \bigcup_{i=1}^{\infty} S_i$, where the S_i are pairwise disjoint sets of positive finite measure, then (letting U be the union of all the atoms in S) we have $\mu(S \sim U) = 0$. Indeed, each atom of S is contained in some S_i; since each S_i contains at most countably many atoms, the same is true of S and therefore $S \sim U$ is measurable. If $S \sim U$ were to have positive measure, the equality $S \sim U = \bigcup (S \sim U) \cap S_i$ would imply that at least one set $(S \sim U) \cap S_i$ would have positive measure, and would therefore contain an atom A. Since A would also be an atom in S, but not in U, this would be a contradiction.

Now, if $x \in L_1(T, \mu)$ and A is an atom, then x is constant a.e. on A. Let $(\phi x)(A) = x(A)\mu(A)$; then $\sum_A |(\phi x)(A)| = \sum_A |x(A)| \mu(A) \leq \int_T |x| \, d\mu < \infty$, so $\phi x \in L_1(\mathcal{A})$. If $y \in L_1(\mathcal{A})$, then the element x which equals $y(A)\mu(A)^{-1}$ on each atom and is zero elsewhere is in $L_1(T, \mu)$ and hence ϕ is onto. Since ϕ is clearly linear, we need only show that it is an isometry, i.e. that for each $x \in L_1(T, \mu)$, $\sum_A |x(A)| \mu(A) = \int_T |x| \, d\mu$.

Let $S(x) = \{ t \in T : x(t) \neq 0 \}$; this set is easily seen to be σ-finite and therefore purely atomic. Now (letting $U(x)$ be the union of all the atoms in $S(x)$), $\int_T |x| \, d\mu = \sum_A |x(A)| \mu(A) + \int_{S(x) \sim U(x)} |x| \, d\mu$; since $S(x)$ is purely atomic, the second term is zero and ϕ is an isometry.

A Banach space E is isomorphic with a Banach space F if there exists a continuous, linear one-to-one map of E onto F which has a continuous inverse. The existence of a Banach space isomorphic to E is equivalent to the existence of positive constants k and K and norms $\| \cdot \|$ and $\| | \cdot | |$ on E such that $k\|x\| \leq \|x\| \leq K\|x\|$ for all $x \in E$.

A normed space E is locally uniformly convex if for each $x \in E$ such that $\|x\| = 1$, and for each $\varepsilon > 0$, there exists $\delta(x, \varepsilon) > 0$ such that $\|x + y\| \leq 2 - \delta$ whenever $\|x - y\| \geq \varepsilon$. It is easily seen that uniform convexity [2] implies local uniform convexity, and the latter implies strict convexity; Lovaglia [8] shows that neither of these implications may be reversed. An equivalent formulation in terms of sequences ($\|x\| = 1 = \|y_n\|$ and $\|x + y_n\| \rightarrow 2$ imply $\|x - y_n\| \rightarrow 0$) shows that E is locally uniformly convex if and only if each separable subspace of E is locally uniformly convex.

The following theorem has been proved by Lovaglia [8, Theorem 3.1] in a more general context, but in a slightly different way. The adaptation of his proof to this special case is shorter; more importantly, our method of renorming l_1 will enable us to apply the result to nonseparable l_1 spaces.
LOVAGLIA'S Theorem. The space l_1 is isomorphic with a locally uniformly convex space.

Proof. By l_1 we mean, of course, the space of all sequences x such that $\|x\| = \sum |x_i| < \infty$. Define a new norm of l_1 by

$$\|x\|_1 = (\|x\|^2 + \sum x_i^2)^{1/2};$$

it is easily checked that $\|x\| \leq \|x\|_1 \leq (2)^{1/2}\|x\|$. To see that this norm makes l_1 locally uniformly convex, suppose that $\|x\|_1 = \|\gamma^n\|_1$ and $\|x + \gamma^n\|_1 \to 2$, but $\lim \|x - \gamma^n\|_1$ (and hence $\lim \|x - \gamma^n\|$) $\neq 0$. Then there exists a subsequence of the γ's (say $\{\gamma^n\}$) and $t > 0$ such that $\|x - \gamma^n\| \geq t$. Since $\|\gamma^n\| \leq 1$ and $|\gamma^n_i| \leq 1$ for each i, we can use the diagonal process to obtain a subsequence such that $\|\gamma^n\| \to a$, say, while $\gamma^n_i \to a_i$ for each i. Thus,

$$\lim \sum_{k=1}^{\infty} (\gamma^n_i)^2 = \lim \left(1 - \sum_{i}^{k} (\gamma^n_i)^2 - \|\gamma^n\|^2\right) = 1 - \sum_{i}^{k} a_i^2 - a^2 = b_k^2,$$

say. Now, for each $k \geq 1$ we have

$$\|x + \gamma^n\|_1$$

$$\leq \left\{ \sum_{i}^{k} (x_i + \gamma^n_i)^2 + (\|x\| + \|\gamma^n\|)^2 + \left[\sum_{k=1}^{\infty} (x_i + \gamma^n_i)^2 \right]^{(1/2)^2}\right\}^{1/2}$$

$$\leq \left\{ \sum_{i}^{k} (x_i + \gamma^n_i)^2 + (\|x\| + \|\gamma^n\|)^2$$

$$+ \left[\left(\sum_{k=1}^{\infty} x_i^2 \right)^{1/2} + \left(\sum_{k=1}^{\infty} (\gamma^n_i)^2 \right)^{1/2}\right]^{2}\right\}^{1/2},$$

the latter being obtained by Minkowski's inequality. Taking limits as $n \to \infty$ and applying the Minkowski inequality once again yields

$$2 = \lim \|x + \gamma^n\|_1$$

$$\leq \left\{ \sum_{i}^{k} (x_i + a_i)^2 + (\|x\| + a)^2 + \left(\sum_{k=1}^{\infty} x_i^2 \right)^{1/2} + b_k \right\}^{1/2}$$

$$\leq \left[\sum_{i}^{k} x_i^2 + \|x\|^2 + \sum_{k=1}^{\infty} x_i^2 \right]^{1/2} + \left[\sum_{i}^{k} a_i^2 + a^2 + b_k^2 \right]^{1/2} = 2.$$

Since equality holds throughout (for all $k \geq 1$), it follows that $\|x\| = a$ and $x_i = a_i$ for all i. We see, then, that $t \leq \|x - \gamma^n\| \leq \sum_{i}^{k} |x_i - \gamma^n_i| + \sum_{k=1}^{\infty} |\gamma^n_i|$, so for $k \geq 1$,
If we choose \(k \geq k_0 \), say, the right side will be no less than \(u > 0 \); if \(k_0 \) is sufficiently large, we will have \(0 < \sum_i^k \| x_i \| < 1 \) and hence, for \(k \geq k_0 \),

\[
\lim \inf \sum_{k+1}^{\infty} \| y^n_i \| \left(\sum_{1}^{k} \| x_i \| \right)^{-1} \geq u \left(\sum_{1}^{k} \| x_i \| \right)^{-1} > u > 0.
\]

Choosing \(K \geq k_0 \) such that \((1 + u) \sum_{1}^{K} \| x_i \| > \| x \| \), we see that there exists a subsequence of the \(y \)'s such that

\[
\sum_{K+1}^{\infty} \| y^n_i \| \left(\sum_{1}^{K} \| x_i \| \right)^{-1} > u > 0.
\]

Finally, then, we have

\[
\sum_{1}^{K} \| y^n_i \| \left(\sum_{1}^{K} \| y^n_i \| \right)^{-1} + \sum_{K+1}^{\infty} \| y^n_i \| \left(\sum_{1}^{K} \| x_i \| \right)^{-1} > 1 + u
\]

so that \(\lim \inf \| y^n \| (\sum_{1}^{K} \| x_i \|)^{-1} \geq 1 + u \). Since \(\lim \inf \| y^n \| = \lim \| y^n \| = \| x \| \), this contradicts the inequality used in defining \(K \), and the proof is complete.

A function \(\phi \) defined on \([0, 1]\) whose range lies in a normed space \(E \) is of bounded variation if \(\sup \sum |\phi(r_{i+1}) - \phi(r_i)| < \infty \), where the supremum is taken over all partitions \(0 = r_0 < r_1 < \cdots < r_n = 1 \) of \([0, 1]\). We say that \(\phi \) is differentiable a.e. if the limit

\[
\phi'(r) = \lim_{h \to 0} \left[\phi(r + h) - \phi(r) \right] h^{-1}
\]

exists for all \(r \) in \([0, 1]\) outside a set of Lebesgue measure zero. The space \(E \) has property (D) if every \(\phi \) from \([0, 1]\) into \(E \) which is of bounded variation is differentiable a.e. Note that \(E \) has property (D) if and only if \(E \) has property (D) under an equivalent norm, i.e. property (D) is "preserved" under isomorphism.

We now state a theorem concerning property (D) which will be of use in what follows.

Gelfand's Theorem. If a separable Banach space \(E \) is isomorphic with a conjugate space, then \(E \) has property (D).

Gelfand proved this in [4, p. 264]; an interesting proof has also been given by Alaoglu in [1].
(i) \((T, \mu)\) is purely atomic.

(ii) \(L_1(T, \mu)\) is isomorphic with a locally uniformly convex Banach space.

(iii) \(L_1(T, \mu)\) has property (D).

Proof. (i) implies (ii). If \((T, \mu)\) is purely atomic, we may assume, by virtue of the above lemma, that \(L_1(T, \mu)\) is \(l_1(S)\) for some set \(S\). Define a new norm on \(l_1\) by \(\|x\|_2 = (\sum |x(s)|^2 + \sum x(s)^2)^{1/2}\). We need only show that, under this norm, every separable subspace (and hence \(l_1(S)\) itself) is locally uniformly convex. Let \(M\) be any separable subspace of \(l_1(S)\) and let \(\{x_n\}_1^\infty\) be a dense sequence in \(M\). As in the proof of the lemma, the support \(S(x_n)\) of each \(x_n\) is countable, so the set \(S_M = \bigcup_{n=1}^\infty S(x_n)\) is also countable. Since \(S(x) \subset S_M\) for each \(x \in M\), we see that \(M \subset l_1(S_M)\), the (separable) subspace of all elements in \(l_1(S)\) which vanish outside \(S_M\). But, by our proof of Lovaglia’s theorem, \(l_1(S_M)\) is locally uniformly convex under the norm induced by \(\| \cdot \|_1\).

(iii) implies (i). Suppose that \((T, \mu)\) is not purely atomic. Then \(T\) contains a subset \(S'\) of finite positive measure which is not the union of atoms; letting \(S = S' \cup \bigcup \{A : A\) is an atom, \(A \subset S'\}\), we see that \(0 < \mu(S) < \infty\) and \(S\) contains no atoms. In the terminology of [5], the restriction of \(\mu\) to the measurable subsets of \(S\) is a convex measure, i.e. there exists a measurable function \(f\) defined on \(S\) with range \([0, 1]\) such that \(\mu\{s \in S : f(s) < r\} = r\mu(S)\) for each \(0 \leq r \leq 1\). Define \(\phi\) on \([0, 1]\) by letting \(\phi(r)\) be the characteristic function of \(\{s \in S : f(s) < r\}\). Then \(\phi(r) \in L_1(T, \mu)\) and \(\|\phi(r) - \phi(r')\| = |r - r'|\mu(S)\), so \(\phi\) is of bounded variation. It is not differentiable at any point of \([0, 1]\), however, since if \(0 < r < 1\), let \(0 < h < \min(r, 1 - r)\) and verify that \(\|\phi(r + h) - \phi(r)\| = h^{-1} - \|\phi(r - h) - \phi(r)\| = 2\mu(S)\). Thus, \(L_1(T, \mu)\) does not have property (D), and the proof is complete.

(i) implies (ii). We simply observe that a function of bounded variation has at most countably many discontinuities, so that its range lies in a separable subspace \(M\) of \(l_1(S)\). Since \(M \subset l_1(S_M)\) and the latter is a separable conjugate space, Gelfand’s theorem applies.

Corollary. Suppose that \(L_1(T, \mu)\) is separable. Then \((T, \mu)\) is purely atomic if and only if \(L_1(T, \mu)\) is isomorphic with a conjugate space.

Proof. By the lemma, we see that if \((T, \mu)\) is purely atomic, then \(L_1(T, \mu)\) is isometric with a conjugate space. The Gelfand theorem and “(iii) implies (i)” of the above theorem prove the converse.

By a result of Kakutani [6], the second conjugate \(E\) of \(L_1[0, 1]\) is an abstract \((L)\)-space and hence [7] is of the form \(L_1(T, \mu)\) for some...
measure space \((T, \mu)\). Since Lebesgue measure on \([0, 1]\) is nonatomic, our theorem shows that \(L_1[0, 1]\) does not have property (D), and hence (using the natural embedding of a Banach space into its second conjugate) \(E\) does not have property (D). By the theorem again, \(E\) is not purely atomic, i.e. there exists a measure space \((T, \mu)\), which is not purely atomic, such that \(L_1(T, \mu)\) is a conjugate space.

The problem posed by Dieudonné in [3] remains open: Characterize those \((T, \mu)\) for which \(L_1(T, \mu)\) is isometric (or isomorphic) with a conjugate space.

Added in proof. M. I. Kadec [Izvestia Vyših Učebnych Zavedenii. Mat. vol. 6 (13) (1959) pp. 51–57] has proved the interesting fact that every separable Banach space is isomorphic with a locally uniformly convex space.

Bibliography

The Institute for Advanced Study